Skip to main content

Advertisement

Log in

Anti-angiogenic activity and safety of intraocular application of triterpenes

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

Assessment of the anti-angiogenic activity and the safety of ophthalmic use of four pentacyclic triterpenes (friedelin, friedelinol, lupenone, and lupeol).

Methods

Triterpenes cytotoxicity (5–640 µmol L−1) was examined in ARPE-19 cells by sulforhodamine B colorimetric method, and the anti-angiogenic activity (50–1000 µmol L−1) was evaluated in the chorioallantoic membrane model. Full-field electroretinography and histological analysis were performed to evaluate intraocular effects of these four triterpenes (at 100 or 500 μmol L−1) in eyes of Wistar rats, for 15 days.

Results

In the cytotoxicity assay, friedelin and friedelinol were not able to drastically reduce cell growth. A dose-dependent response was observed in groups exposed to lupeol or lupenone. During the chorioallantoic membrane assay, friedelinol at 500 μmol L−1 reduced the vascularity in 26%; lupeol and lupenone showed promising anti-angiogenic activity, reducing three parameters: vascularized area (> 30%), number of junctions (> 20%), and vessel length (> 15%). According to the electroretinographic and histologic findings, triterpenes at 100 µmol L−1 or lupenone at 500 µmol L−1 did not induce any transient or permanent disturbance in retinal structure or functioning.

Conclusions

Triterpenes at 100 µmol L−1 or lupenone at 500 µmol L−1 were considered safe for potential ophthalmic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Behl T, Kotwani A (2015) Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy. Life Sci 135:131–137. https://doi.org/10.1016/j.lfs.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  2. Santana CP, Mansur AAP, Mansur HS, Silva-Cunha A (2020) Bevacizumab-conjugated quantum dots: in vitro antiangiogenic potential and biosafety in rat retina. J Ocul Pharmacol Ther 36:1–17. https://doi.org/10.1089/jop.2019.0108

    Article  CAS  Google Scholar 

  3. Toledo CR, Pereira VV, Andrade GF, Silva-Cunha A (2020) PLGA-corosolic acid implants for potential application in ocular neovascularization diseases. Brazilian J Pharm Sci 56:e18484. https://doi.org/10.1590/s2175-97902019000418484

    Article  CAS  Google Scholar 

  4. Certo G, Costa R, D’Angelo V et al (2017) Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus. Nat Prod Res 31:2850–2856. https://doi.org/10.1080/14786419.2017.1303696

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Z, Yao W, Zheng J et al (2019) A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress. Exp Eye Res 180:92–101. https://doi.org/10.1016/j.exer.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  6. Toledo CR, Pereira VV, Dourado LFN et al (2019) Corosolic acid: antiangiogenic activity and safety of intravitreal injection in rats eyes. Doc Ophthalmol 138:181–194. https://doi.org/10.1007/s10633-019-09682-x

    Article  PubMed  Google Scholar 

  7. Sousa GF, Aguilar MG, Dias DF et al (2017) Anti-inflammatory, antimicrobial and acetylcholinesterase inhibitory activities of friedelanes from Maytenus robusta branches and isolation of further triterpenoids. Phytochem Lett 21:61–65. https://doi.org/10.1016/j.phytol.2017.05.026

    Article  CAS  Google Scholar 

  8. Antonisamy P, Duraipandiyan V, Ignacimuthu S (2011) Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J Pharm Pharmacol 63:1070–1077. https://doi.org/10.1111/j.2042-7158.2011.01300.x

    Article  CAS  PubMed  Google Scholar 

  9. Martucciello S, Balestrieri ML, Felice F et al (2010) Effects of triterpene derivatives from Maytenus rigida on VEGF-induced Kaposi’s sarcoma cell proliferation. Chem Biol Interact 183:450–454. https://doi.org/10.1016/j.cbi.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  10. Kuete V, Dongmo Mafodong FL, Celik I et al (2017) In vitro cytotoxicity of compounds isolated from Desbordesia glaucescens against human carcinoma cell lines. South African J Bot 111:37–43. https://doi.org/10.1016/j.sajb.2017.03.031

    Article  CAS  Google Scholar 

  11. de Sousa GF, Soares DCF, da Mussel WN et al (2014) Pentacyclic triterpenes from branches of Maytenus robusta and in vitro cytotoxic property against 4T1 cancer cells. J Braz Chem Soc 25:1338–1345. https://doi.org/10.5935/0103-5053.20140114J

    Article  Google Scholar 

  12. Xu F, Huang X, Wu H, Wang X (2018) Beneficial health effects of lupenone triterpene: a review. Biomed Pharmacother 103:198–203. https://doi.org/10.1016/j.biopha.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  13. Gallo MBC, Sarachine MJ (2009) Biological activities of lupeol. Int J Biomed Pharm Sci. 3(1):46–66

    Google Scholar 

  14. Badshah H, Ali T, Rehman S et al (2016) Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-Jun N-terminal kinase pathway in the adult mouse brain. J Neuroimmune Pharmacol 11:48–60. https://doi.org/10.1007/s11481-015-9623-z

    Article  PubMed  Google Scholar 

  15. Malinowska M, Miroslaw B, Sikora E et al (2019) New lupeol esters as active substances in the treatment of skin damage. PLoS One 14:1–15. https://doi.org/10.1371/journal.pone.0214216

    Article  CAS  Google Scholar 

  16. Soares DCF, de Paula Oliveira DC, Barcelos LS et al (2017) Antiangiogenic activity of PLGA-lupeol implants for potential intravitreal applications. Biomed Pharmacother 92:394–402. https://doi.org/10.1016/j.biopha.2017.05.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Asha R, Gayathri Devi V, Abraham A (2016) Lupeol, a pentacyclic triterpenoid isolated from Vernonia cinerea attenuate selenite induced cataract formation in Sprague Dawley rat pups. Chem Biol Interact 245:20–29. https://doi.org/10.1016/j.cbi.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  18. Magalhães CG, Ferrari FC, Guimarâes DAS et al (2011) Maytenus salicifolia: Triterpenes isolated from stems and antioxidant property of extracts from aerial parts. Brazilian J Pharmacogn 21:415–419. https://doi.org/10.1590/S0102-695X2011005000039

    Article  CAS  Google Scholar 

  19. Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric cytotoxicity assay for anti-cancer drug screening. J Natl Cancer Inst 82:1107–1112. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  20. Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41:391–394. https://doi.org/10.1016/0012-1606(74)90316-9

    Article  CAS  PubMed  Google Scholar 

  21. Robson AG, Nilsson J, Li S et al (2018) ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol 136:1–26. https://doi.org/10.1007/s10633-017-9621-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. McCulloch DL, Marmor MF, Brigell MG et al (2015) ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12. https://doi.org/10.1007/s10633-014-9473-7

    Article  PubMed  Google Scholar 

  23. Dong CJ, Agey P, Hare WA (2004) Origins of the electroretinogram oscillatory potentials in the rabbit retina. Vis Neurosci 21:533–543. https://doi.org/10.1017/S0952523804214043

    Article  PubMed  Google Scholar 

  24. Hulsart-Billström G, Dawson JI, Hofmann S et al (2016) A surprisingly poor correlation between in vitro and in vivo testing of biomaterials for bone regeneration: results of a multicentre analysis. Eur Cells Mater 31:312–322. https://doi.org/10.22203/eCM.v031a20

    Article  Google Scholar 

  25. Leng T, Miller JM, Bilbao KV et al (2004) The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation. Retin J Retin Vitr Dis 24:427–434. https://doi.org/10.1097/00006982-200406000-00014

    Article  Google Scholar 

  26. Silva FR, Paiva MRB, Dourado LFN et al (2018) Intravitreal injection of the synthetic peptide LyeTx I b, derived from a spider toxin, into the rabbit eye is safe and prevents neovascularization in a chorio-allantoic membrane model. J Venom Anim Toxins Incl Trop Dis 24:1–13. https://doi.org/10.1186/s40409-018-0168-5R

    Article  Google Scholar 

  27. Vieira LC, Paula C, Moreira DS et al (2020) Rosmarinic acid intravitreal implants: a new therapeutic approach for ocular neovascularization. Planta Med. https://doi.org/10.1055/a-1223-2525published

    Article  PubMed  Google Scholar 

  28. Huang W, Iii WC, Twamley M et al (2015) Application of electroretinography (ERG) in early drug development for assessing retinal toxicity in rats. Toxicol Appl Pharmacol 289:525–533. https://doi.org/10.1016/j.taap.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  29. Habot-Wilner Z, Mazza O, Shahar J et al (2017) Safety of intravitreal clindamycin in albino rabbit eyes. Doc Ophthalmol 135:133–146. https://doi.org/10.1007/s10633-017-9599-5

    Article  PubMed  Google Scholar 

  30. Negretto AD, Rosa AAM, Nakashima AA et al (2008) Avaliação da retinopatia hipertensiva através do potencial oscilatório do eletrorretinograma. Arq Bras Oftalmol 71:38–42. https://doi.org/10.1590/s0004-27492008000100008

    Article  PubMed  Google Scholar 

  31. Almeida FPP, Saliba JB, Ribeiro JAS et al (2015) In vivo release and retinal toxicity of cyclosporine-loaded intravitreal device. Doc Ophthalmol 131:207–214. https://doi.org/10.1007/s10633-015-9520-z

    Article  PubMed  Google Scholar 

  32. Paiva MB, Nunes C, Coelho M et al (2021) Assessment of the safety of intravitreal injection of metoprolol tartrate in rabbits. Doc Ophthalmol 142:75–85. https://doi.org/10.1007/s10633-020-09781-0

    Article  PubMed  Google Scholar 

  33. Toth CA, Seider MI, Chen X (2016) Intravitreal triamcinolone deposition mimicking frosted branch angiitis: optical coherence tomography findings. Retin J Retin Vitr Dis 36:41–42. https://doi.org/10.1136/bcr-2014-206286

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais). We also acknowledge the donation of triterpenes from Núcleo de Estudos de Plantas Medicinais (NEPLAM) of Departamento de Química of UFMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cibele Rodrigues Toledo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Statement of human rights

This article does not contain any studies with human participants performed by any of the authors.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo, C.R., Pereira, V.V., Duarte, L.P. et al. Anti-angiogenic activity and safety of intraocular application of triterpenes. Doc Ophthalmol 143, 259–270 (2021). https://doi.org/10.1007/s10633-021-09841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-021-09841-z

Keywords

Navigation