Skip to main content
Log in

Revealing the Different Roles of Sulfates on Pt/Al2O3 Catalyst for Methane and Propane Combustion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Pt catalysts supported on SO42− group modified Al2O3 were synthesized and tested for methane and propane combustion. The introduction of SO42− group promoted the surface acidity but reduced the quantity of exposed surface Pt atoms due to strong coordination effect. The presence of SO42− group significantly promoted the propane combustion reaction but inhibited the methane combustion reaction. It can be inferred that the promotion on propane combustion is ascribed to the enhanced activation of C–C bond (370.3 kJ mol−1) by sulfates. Whereas the sulfates are not favorable for the activation and cracking of C-H bond (439.3 kJ mol−1), and the reduced number of exposed Pt sites results in the activity decrease of methane combustion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Cen B, Tang C, Lu J, Chen J, Luo M (2021) Different roles of MoO3 and Nb2O5 promotion in short-chain alkane combustion over Pt/ZrO2 catalysts. Chin J Catal. https://doi.org/10.1016/S1872-2067(20)63771-8

    Article  Google Scholar 

  2. Li D, Cen B, Fang C, Leng X, Wang W, Wang Y, Chen J, Luo M (2021) High performance cobalt nanoparticle catalysts supported by carbon for ozone decomposition: the effects of the cobalt particle size and hydrophobic carbon support. New J Chem 45:561–568

    Article  CAS  Google Scholar 

  3. Shi L, Yuan H, Wu F, Xia H, Jiang W, Yang C, Hu G, Wang Y, Fan M (2021) Robust “dry amine” solid CO2 sorbent synthesized by a facile, cost-effective and environmental friendly pathway. Chem Eng J 440:126447

    Article  Google Scholar 

  4. Cao J, Xia J, Zhang Y, Liu X, Bai L, Xu J, Yang C, Zheng S, Yang T, Tang K, Zhang C, Zhou C (2021) Influence of the alumina crystal phase on the performance of CoMo/Al2O3 catalysts for the selective hydrodesulfurization of fluid catalytic cracking naphtha. Fuel 289:119843

    Article  CAS  Google Scholar 

  5. Feng Z, Ren Q, Peng RS, Mo M, Zhang M, Fu L, Chen D (2019) Effect of CeO2 morphologies on toluene catalytic combustion. Catal Today 332:177–182

    Article  CAS  Google Scholar 

  6. Gao Y, Wang S, Lv L, Li D, Yue X, Wang S (2020) Catalytic activity of electrodeposited cobalt oxide films for methane combustion in a micro-channel reactor. Catal Lett 150:3617–3625

    Article  CAS  Google Scholar 

  7. Liao W, Zhao P, Cen B, Jia A, Lu J, Luo M (2020) Co-Cr-O mixed oxides for low-temperature total oxidation of propane: Structural effects, kinetics, and spectroscopic investigation. Chin J Catal 41:442–453

    Article  CAS  Google Scholar 

  8. Hu W, Shao Z, Cao X, Hu P (2020) Multi sites vs single site for catalytic combustion of methane over Co3O4(110): a first-principles kinetic monte carlo study. Chin J Catal 41:1369–1377

    Article  CAS  Google Scholar 

  9. Torralba R, Corro G, Rosales F, Bañuelos F, Pal U, Olivares-Xometl O, Guilleminot E, Fierro JLG (2020) Total oxidation of methane over sulfur poisoning resistant Pt/ZrO2 catalyst: Effect of Pt2+-Pt4+and Pt2+-Zr4+ dipoles at metal-support interface. Catal Lett. https://doi.org/10.1007/s10562-020-03411-9

    Article  Google Scholar 

  10. Sun M, Li W, Zhang B, Cheng G, Lan B, Ye F, Zheng Y, Cheng X, Yu L (2018) Enhanced catalytic performance by oxygen vacancy and active interface originated from facile reduction of OMS-2. Chem Eng J 331:626–635

    Article  CAS  Google Scholar 

  11. Ji J, Lu X, Chen C, He M, Huang H (2020) Potassium-modulated δ-MnO2 as robust catalysts for formaldehyde oxidation at room temperature. Appl Catal B Environ 260:118210

    Article  CAS  Google Scholar 

  12. Li X, Liu Y, Liao W, Jia A, Wang Y, Lu J, Luo M (2019) Synergistic roles of Pt0 and Pt2+ species in propane combustion over highperformance Pt/AlF3 catalysts. Appl Sur Sci 475:524–531

    Article  CAS  Google Scholar 

  13. Chen J, Zhong J, Wu Y, Hu W, Qu P, Xiao X, Zhang G, Liu X, Jiao Y, Zhong L, Chen Y (2020) Particle size effects in stoichiometric methane combustion: structure-activity relationship of Pd catalyst supported on gamma-alumina. ACS Catal 10:10339–10349

    Article  CAS  Google Scholar 

  14. Murata K, Ohyama J, Yamamoto Y, Arai S, Satsuma A (2020) Methane combustion over Pd/Al2O3 catalysts in the presence of water: effects of Pd particle size and alumina crystalline phase. ACS Catal 10:8149–8156

    Article  CAS  Google Scholar 

  15. Zhao J, Xi W, Tu C, Dai Q, Wang X (2020) Catalytic oxidation of chlorinated VOCs over Ru/TixSn1-x catalysts. Appl Catal B 263:118237

    Article  CAS  Google Scholar 

  16. He M, Cao Y, Ji J, Li K, Huang H (2021) Superior catalytic performance of Pd-loaded oxygen-vacancy-rich TiO2 for formaldehyde oxidation at room temperature. J Catal 396:122–135

    Article  CAS  Google Scholar 

  17. Yang J, Peng Y, Ren G, Qi H, Zhou X, Xu J, Deng F, Chen Z, Zhang J, Liu K, Pan X, Liu W, Su Y, Li W, Qiao B, Ma D, Zhang T (2020) A hydrothermally stable irreducible oxide-modified Pd/MgAl2O4 catalyst for methane combustion. Angew Chem Int Ed 59:18522–18526

    Article  CAS  Google Scholar 

  18. Zhao P, Li X, Liao W, Wang Y, Chen J, Lu J, Luo M (2019) Understanding the role of NbOx on Pt/Al2O3 for effective catalytic propane oxidation. Ind Eng Chem Res 58:21945–21952

    Article  CAS  Google Scholar 

  19. Zhu Z, Lu G, Guo Y, Guo Y, Zhang Z, Wang Y, Gong X (2013) High performance and stability of the Pt-W/ZSM-5 catalyst for the total oxidation of propane: the role of tungsten. ChemCatChem 5:2495–2503

    Article  CAS  Google Scholar 

  20. Garcia T, Agouram S, Taylor S, Morgan D, Dejoz A, Vázquez I, Solsona B (2015) Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: influence of the order of impregnation. Catal Today 254:12–20

    Article  CAS  Google Scholar 

  21. Garcia T, Weng W, Solsona B, Carter E, Carley A, Kiely C, Taylor S (2011) The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. Catal Sci Technol 1:1367–1375

    Article  CAS  Google Scholar 

  22. Liao W, Fang X, Cen B, Chen J, Liu Y, Luo M, Lu J (2020) Deep oxidation of propane over WO3-promoted Pt/BN catalysts: the critical role of Pt-WO3 interface. Appl Catal B 272:118858

    Article  CAS  Google Scholar 

  23. Zhao P, Chen J, Yu H, Cen B, Wang W, Luo M, Lu J (2020) Insights into propane combustion over MoO3 promoted Pt/ZrO2 catalysts: the generation of Pt-MoO3 interface and its promotional role on catalytic activity. J Catal 391:80–90

    Article  CAS  Google Scholar 

  24. Liu Y, Li X, Liao W, Jia A, Wang Y, Luo M, Lu J (2019) Highly active Pt/BN catalysts for propane combustion: the roles of support and reactant-induced evolution of active sites. ACS Catal 9:1472–1481

    Article  CAS  Google Scholar 

  25. Xia Q, Hidajat K, Kawi S (2020) Effect of ZrO2 loading on the structure, acidity, and catalytic activity of the SO42-/ZrO2/MCM-41 acid catalyst. J Catal 205:318–331

    Article  Google Scholar 

  26. Corma A, Fornes V, Rajadell M, Nieto J (1994) Influence of preparation conditions on the structure and catalytic properties of SO42-/ZrO2 superacid catalysts. Appl Catal A Gen 116:151–163

    Article  CAS  Google Scholar 

  27. Zhang L, Weng D, Wang B, Wu X (2010) Effects of sulfation on the activity of Ce0.67Zr0.33O2 supported Pt catalyst for propane oxidation. Catal Commun 11:1229–1232

    Article  CAS  Google Scholar 

  28. Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T (2002) The support effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the acid strength of support materials. Appl Catal A Gen 233:103–112

    Article  CAS  Google Scholar 

  29. Hao H, Jin B, Liu W, Wu X, Yin F, Liu S (2020) Robust Pt@TiOx/TiO2 catalysts for hydrocarbon combustion: effects of Pt-TiOx interaction and sulfates. ACS Catal 10:13543–13548

    Article  CAS  Google Scholar 

  30. Arata K, Matsuhashi H, Hino M, Nakamura H (2003) Synthesis of solid superacids and their activities for reactions of alkanes. Catal Today 81:17–30

    Article  CAS  Google Scholar 

  31. Jentoft F, Gates B (1997) Solid-acid-catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules. Top Catal 4:1–13

    Article  CAS  Google Scholar 

  32. Wang P, Yue Y, Wang T, Bao X (2020) Alkane isomerization over sulfated zirconia solid acid system. Int J Energy Res 44:3270–3294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21872124, 22072137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Chen or Mengfei Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, B., Wang, W., Zhao, P. et al. Revealing the Different Roles of Sulfates on Pt/Al2O3 Catalyst for Methane and Propane Combustion. Catal Lett 152, 863–871 (2022). https://doi.org/10.1007/s10562-021-03675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03675-9

Keywords

Navigation