Skip to main content

Advertisement

Log in

Phloretin Alleviates Arsenic Trioxide-Induced Apoptosis of H9c2 Cardiomyoblasts via Downregulation in Ca2+/Calcineurin/NFATc Pathway and Inflammatory Cytokine Release

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Arsenic trioxide (ATO) is among the first-line chemotherapeutic drugs for treating acute promyelocytic leukemia patients, but its clinical use is hampered due to cardiotoxicity. The present investigation unveils the mechanism underlying ATO-induced oxidative stress that promotes calcineurin (a ubiquitous Ca2+/calmodulin-dependent serine/threonine phosphatase expressed only during sustained Ca2+ elevation) expression, inflammatory cytokine release and apoptosis in H9c2 cardiomyoblasts, and its possible modulation with phloretin (PHL, an antioxidant polyphenol present in apple peel). ATO caused Ca2+ overload resulting in elevated expression of calcineurin and its downstream transcriptional effector NFATc causing the release of cytokines such as IL-2, IL-6, MCP-1, IFN-γ, and TNF-α in H9c2 cardiomyoblast. There was a visible increase in the nuclear fraction of NF-κB and ROS-mediated apoptotic cell death. The expression levels of cardiac-specific genes (troponin, desmin, and caveolin-3) and genes of the apoptotic signaling pathway (BCL-2, BAX, IGF1, AKT, ERK1, -2, RAF1, and JNK) in response to ATO and PHL were studied. The putative binding mode and the potential ligand–target interactions of PHL with calcineurin using docking software (Autodock and iGEMDOCKv2) showed the high binding affinity of PHL to calcineurin. PHL co-treatment significantly reduced Ca2+ influx and normalized the expression of calcineurin, NFATc, NF-κB, and other cytokines. PHL co-treatment resulted in activation of BCL-2, IGF1, AKT, RAF1, ERK1, and ERK2 and inhibition of BAX and JNK. Overall, these results revealed that PHL has a protective effect against ATO-induced apoptosis and we propose calcineurin as a druggable target for the interaction of PHL in ATO cardiotoxicity in H9c2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vineetha, V. P., & Raghu, K. G. (2019). An overview on arsenic trioxide induced cardiotoxicity. Cardiovascular Toxicology, 19, 105–119

    Article  CAS  PubMed  Google Scholar 

  2. Vineetha, V. P., Prathapan, A., Soumya, R. S., & Raghu, K. G. (2013). Arsenic trioxide toxicity in H9c2 myoblasts—Damage to cell organelles and possible amelioration with Boerhaavia diffusa. Cardiovascular Toxicology, 13, 123–137

    Article  CAS  PubMed  Google Scholar 

  3. Vineetha, V. P., Soumya, R. S., & Raghu, K. G. (2015). Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes. European Journal of Pharmacology, 754, 162–172

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J.-y, Wang, M., Wang, R.-y, Sun, X., Du, Y.-y, Ye, J.-x, Sun, G.-b, & Sun, X.-b. (2018). Salvianolic acid A ameliorates arsenic trioxide-induced cardiotoxicity through decreasing cardiac mitochondrial injury and promotes its anticancer activity. Frontiers in Pharmacology, 9, 487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kim, Y. H., Moon, J. S., Lee, K. S., Park, S. Y., Cheong, J. H., Kang, H. S., Lee, H. Y., & Kim, H. D. (2004). Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates the expression of iNOS through IKK and NF-κB activity in LPS-stimulated mouse peritoneal macrophages and RAW 264.7 cells. Biochemical and Biophysical Research Communications, 314, 695–703

    Article  CAS  PubMed  Google Scholar 

  6. Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A., & Crabtree, G. R. (1988). Identification of a putative regulator of early T cell activation genes. Science, 241, 202–205

    Article  CAS  PubMed  Google Scholar 

  7. Clipstone, N. A., & Crabtree, G. R. (1992). Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature, 357, 695–697

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, T., & Brown, J. H. (2004). Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovascular Research, 63, 476–486

    Article  CAS  PubMed  Google Scholar 

  9. Chow, C. W., Dong, C., Flavell, R. A., & Davis, R. J. (2000). c-Jun NH2- terminal kinase inhibits targeting of the protein phosphatase calcineurin to NFATc1. Molecular and Cellular Biology, 20, 5227–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, T. T., Xiong, Q., Enslen, H., Davis, R. J., & Chow, C. W. (2002). Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Molecular and Cellular Biology, 22, 3892–3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, T. T., Yu, R. Y., Agadir, A., Gao, G.-J., Campos-Gonzalez, R., Tournier, C., & Chow, C.-W. (2008). Integration of protein kinases mTOR and extracellular signal-regulated kinase 5 in regulating nucleocytoplasmic localization of NFATc4. Molecular and Cellular Biology, 28, 3489–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Molkentin, J. D. (2004). Calcineurin–NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular research, 63, 467–475

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, J., Zhang, Y., Wang, W., Li, C., & Zhang, Z. (2018). Double-sided personality: Effects of arsenic trioxide on inflammation. Inflammation, 41, 1128–1134

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, W., Guo, C., Gao, R., Ge, M., Zhu, Y., & Zhang, Z. (2013). The protective role of resveratrol against arsenic trioxide-induced cardiotoxicity. Evidence-Based Complementary and Alternative Medicine, 2013, 407839

    PubMed  PubMed Central  Google Scholar 

  15. Susan, A., Rajendran, K., Sathyasivam, K., & Krishnan, U. M. (2019). An overview of plant-based interventions to ameliorate arsenic toxicity. Biomedicine and Pharmacotherapy, 109, 838–852

    Article  CAS  PubMed  Google Scholar 

  16. Mirza-Aghazadeh-Attari, M., Ekrami, E. M., Aghdas, S. A. M., Mihanfar, A., Hallaj, S., Yousefi, B., Safa, A., & Majidinia, M. (2020). Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sciences, 255, 117481

    Article  CAS  PubMed  Google Scholar 

  17. Rahaman, M. S., Banik, S., Akter, M., Rahman, M. M., Sikder, M. T., Hosokawa, T., Saito, T., & Kurasaki, M. (2020). Curcumin alleviates arsenic-induced toxicity in PC12 cells via modulating autophagy/apoptosis. Ecotoxicology and Environmental Safety, 200, 110756

    Article  CAS  PubMed  Google Scholar 

  18. Vineetha, V. P., Girija, S., Soumya, R. S., & Raghu, K. G. (2014). Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity. Food and Function, 5, 502–511

    Article  CAS  PubMed  Google Scholar 

  19. Singh, G., Thaker, R., Sharma, A., & Parmar, D. (2021). Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11740-w

    Article  PubMed  Google Scholar 

  20. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and autodock tools 4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 16, 2785–2791

    Article  CAS  Google Scholar 

  21. Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. (2011). iGEMDOCK: A graphical environment of enhancing iGEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12(Suppl 1), S33. https://doi.org/10.1186/1471-2105-12-S1-S33

    Article  PubMed  PubMed Central  Google Scholar 

  22. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408

    Article  CAS  PubMed  Google Scholar 

  23. Molkentin, J. D., Lu, J., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S., & Olson, E. N. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93, 215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olson, E. N., & Molkentin, J. D. (1999). Prevention of cardiac hypertrophy by calcineurin inhibition hope or hype? Circulation research, 84, 623–632

    Article  CAS  PubMed  Google Scholar 

  25. Stemmer, P. M., & Klee, C. B. (1994). Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry, 33, 6858–6866

    Article  Google Scholar 

  26. Ding, R., Gao, W., Ostrodci, D. H., He, Z., Song, Y., Ma, L., Liang, C., & Wu, Z. (2013). Effect of interleukin-2 level and genetic variants on coronary artery disease. Inflammation, 36, 1225–1231

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, J. C., Chang, K. J., Jin, Y. X., Zhao, X. W., Li, B., & Yang, M. H. (2019). Arsenic trioxide inhibits the metastasis of small cell lung cancer by blocking calcineurin-nuclear factor of activated T cells (NFAT) signaling. Medical Science Monitor, 25, 2228–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, J. L., Kang, M. K., Gong, J. H., Park, S. H., Han, S. Y., & Kang, Y. H. (2012). Novel antiosteoclastogenic activity of phloretin antagonizing RANKL-induced osteoclast differentiation of murine macrophages. Molecular Nutrition and Food Research, 56, 1223–1233

    Article  CAS  PubMed  Google Scholar 

  29. Mathas, S., Lietz, A., Janz, M., Hinz, M., Jundt, F., Scheidereit, C., Bommert, K., & Dörken, B. (2003). Inhibition of NF-κB essentially contributes to arsenic-induced apoptosis. Blood, 102, 1028–1034

    Article  CAS  PubMed  Google Scholar 

  30. Dhalla, N. S., Elmoselhi, A. B., Hata, T., & Makino, N. (2000). Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovascular Research, 3, 446–456

    Article  Google Scholar 

  31. Meldrum, D. R. (1998). Tumor necrosis factor in the heart. American Journal of Physiology, 274, R577-595

    Article  CAS  PubMed  Google Scholar 

  32. Ferrari, R. (1999). The role of TNF in cardiovascular disease. Pharmacological Research, 40, 2

    Article  Google Scholar 

  33. Hamdy, N. M. (2011). Relationship between pro-anti-inflammatory cytokines, T-cell activation and CA 125 in obese patients with heart failure. Medical Science Monitor, 17, 173–178

    Article  Google Scholar 

  34. Younce, C. W., Wang, K., & Kolattukudy, P. E. (2010). Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovascular Research, 87, 665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: A double-edged sword. Nature Reviews Immunology, 6, 508–519

    Article  CAS  PubMed  Google Scholar 

  36. Li, S. W., Sun, X., He, Y., Guo, Y., Zhao, H. J., Hou, Z. J., & Xing, M. W. (2017). Assessment of arsenic trioxide in the heart of Gallus gallus: Alterations of oxidative damage parameters, inflammatory cytokines, and cardiac enzymes. Environmental Science and Pollution Research International, 24, 5781–5790

    Article  CAS  PubMed  Google Scholar 

  37. Jeon, D., Jeong, M. C., Jnawali, H. N., Kwak, C., Ryoo, S., Jung, I. D., & Kim, Y. (2017). Phloretin exerts anti-tuberculosis activity and suppresses lung Inflammation. Molecules, 22, 183

    Article  PubMed Central  CAS  Google Scholar 

  38. Sasse, S., Brand, N. J., Kyprianou, P., Dhoot, G. K., Wade, R., Arai, M., Periasamy, M., Yacoub, M. H., & Barton, P. J. (1993). Troponin I gene expression during human cardiac development and in end-stage heart failure. Circulation Research, 72, 932–938

    Article  CAS  PubMed  Google Scholar 

  39. Li, Z., Marchand, P., Humbert, J., Babinet, C., & Paulin, D. (1993). Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development, 117, 947–959

    Article  CAS  PubMed  Google Scholar 

  40. Panneerselvam, L., Raghunath, A., Ravi, M. S., Vetrivel, A., Subramaniam, V., Sundarraj, K., & Perumal, E. (2020). Ferulic acid attenuates arsenic-induced cardiotoxicity in rats. Biotechnology and Applied Biochemistry, 67, 186–195

    Article  CAS  PubMed  Google Scholar 

  41. Hedley, P. L., Kanters, J. K., Dembic, M., Jespersen, T., Skibsbye, L., Aidt, F. H., Eschen, O., Graff, C., Behr, E. R., Schlamowitz, S., Corfield, V., McKenna, W. J., & Christiansen, M. (2013). The role of CAV3 in long-QT syndrome: Clinical and functional assessment of a caveolin-3/Kv11.1 double heterozygote versus caveolin-3 single heterozygote. Circulation. Cardiovascular Genetics, 6, 452–461

    Article  CAS  PubMed  Google Scholar 

  42. Garg, V., Sun, W., & Hu, K. (2009). Caveolin-3 negatively regulates recombinant cardiac K(ATP) channels. Biochemical and Biophysical Research Communications, 385, 472–477

    Article  CAS  PubMed  Google Scholar 

  43. Chen, D., Zheng, X., Kang, D., Yan, B., Liu, X., Gao, Y., & Zhang, K. (2012). Apoptosis and expression of the Bcl-2 family of proteins and P53 in human pancreatic ductal adenocarcinoma. Medical Principals and Practice, 21, 68–73

    Article  CAS  Google Scholar 

  44. Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., & Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. BioMed Research International, 2014, 1508452014

    Google Scholar 

  45. Adams, J., & Cory, S. (1998). The Bcl-2 protein family: Arbiters of cell survival. Science, 281, 1322–1326

    Article  CAS  PubMed  Google Scholar 

  46. Vineetha, R. C., Binu, P., Arathi, P., & Nair, R. H. (2018). L-ascorbic acid and α-tocopherol attenuate arsenic trioxide-induced toxicity in H9c2 cardiomyocytes by the activation of Nrf2 and Bcl2 transcription factors. Toxicology Mechanisms and Methods. https://doi.org/10.1080/15376516.2017.1422578

    Article  PubMed  Google Scholar 

  47. Ren, J., Samson, W. K., & Sowers, J. R. (1999). Insulin-like growth factor 1 as a cardiac hormone: Physiological and pathophysiological implications in heart disease. Journal of Molecular and Cellular Cardiology, 31, 2049–2061

    Article  CAS  PubMed  Google Scholar 

  48. Yamamura, T., Otani, H., Nakao, Y., Hattori, R., Osako, M., & Imamura, H. (2001). IGF-1 differentially regulates Bcl-xL and Bax and confers myocardial protection in the rat heart. American Journal of Physiology-Heart and Circulatory Physiology, 280, H1191–H1200

    Article  CAS  PubMed  Google Scholar 

  49. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., & Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell, 96, 857–868

    Article  CAS  PubMed  Google Scholar 

  50. Song, J. J., & Lee, Y. J. (2005). Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1-MEK-JNK signal transduction pathway during metabolic oxidative stress: A negative feedback loop. Journal of Cell Biology, 170, 61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G., & Pae, H.-O. (2011). Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? Journal of Signal Transduction, 2011, 6. https://doi.org/10.1155/2011/792639

    Article  CAS  Google Scholar 

  52. Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shiojima, I., Hiroi, Y., & Yazaki, Y. (1997). Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. Journal of Clinical Investigation, 100, 1813–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cleveland, J. L., Troppmair, J., Packham, G., Askew, D. S., Lloyd, P., Gonzalez-Garcia, M., Nunez, G., Ihle, J. N., & Rapp, U. R. (1994). v-raf suppresses apoptosis and promotes growth of interleukin-3-dependent myeloid cells. Oncogene, 9, 2217–2226

    CAS  PubMed  Google Scholar 

  54. Erhardt, P., Schremser, E. J., & Cooper, G. M. (1999). B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Molecular and Cellular Biology, 19, 5308–5315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, L., Li, X., Wei, S., Hu, T., Wu, C., Jian, W., & Luo, P. (2020). Relationship between p38 signaling pathway and arsenic-induced apoptosis: A meta-analysis. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00646-8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tfelt-Hansen, J., MacLeod, R. J., Chattopadhyay, N., Yano, S., Quinn, S., Ren, X., Terwilliger, E. F., Schwarz, P., & Brown, E. M. (2003). Calcium-sensing receptor stimulates PTHrP release by PKC, p38 MAPK, JNK and ERK1/2 dependent pathways in H-500 cells. American Journal of Physiology-Endocrinology and Metabolism, 285, E329–E337

    Article  CAS  PubMed  Google Scholar 

  57. Kim, B. J., Ryu, S. W., & Song, B. J. (2006). Jnk- and p38 kinase-mediated phosphorylation of bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma hepg2 cells. Journal of Biological Chemistry, 281, 21256–21265

    Article  CAS  PubMed  Google Scholar 

  58. Xie, P., Guo, S., Fan, Y., Zhang, H., Gu, D., & Li, H. (2009). Atrogin-1/mafbx enhances simulated ischemia/reperfusion induced apoptosis in cardiomyocytes through degradation of mapk phosphatase-1 and sustained jnk activation. Journal of Biological Chemistry, 284, 5488–5496

    Article  CAS  PubMed  Google Scholar 

  59. Fan, Y., Wang, C., Zhang, Y., Hang, P., Liu, Y., Pan, Z., Wang, N., & Du, Z. (2013). Genistein ameliorates adverse cardiac effects induced by arsenic trioxide through preventing cardiomyocytes apoptosis. Cellular Physiology and Biochemistry, 31, 80–91

    Article  CAS  PubMed  Google Scholar 

  60. Davison, K., Mann, K. K., Waxman, S., & Miller, W. H., Jr. (2004). JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood, 103, 3496–3502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director, CSIR- NIIST for providing all the necessary facilities for conducting the experiments. We specially thank the Computational Modeling and Simulation Unit, CSIR-NIIST, for providing the necessary help with the docking study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu Kozhiparambil Gopalan.

Ethics declarations

Conflicts of interest

The authors report no conflict of interest.

Additional information

Handling Editor: Lorraine Chalifour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12012_2021_9655_MOESM1_ESM.pdf

The effect of ATO-PHL co-treatment was checked with various cancer cell lines such as pancreatic cancer cell line (BxPC3), breast cancer cell line (MCF7), and colon cancer cell line (SW480) to confirm that the anticancer property of ATO was not compromised by PHL. The cancer cell lines were co-treated with ATO and PHL and were evaluated for any alterations in cell morphology (Fig. S.1). Cytotoxicity was evaluated using MTT (Fig. S.2.a) and lactate dehydrogenase (LDH) release (Fig. S.2.b) assays and the level of the cell protectant glutathione (Fig. S.3) was also assessed with ATO-PHL co-treatment. The toxic effect of ATO on cancer cells was potentiated by the co-treatment with PHL. Supplementary file1 (PDF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadavanath Prabhakaran, V., Kozhiparambil Gopalan, R. Phloretin Alleviates Arsenic Trioxide-Induced Apoptosis of H9c2 Cardiomyoblasts via Downregulation in Ca2+/Calcineurin/NFATc Pathway and Inflammatory Cytokine Release. Cardiovasc Toxicol 21, 642–654 (2021). https://doi.org/10.1007/s12012-021-09655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09655-0

Keywords

Navigation