Skip to main content
Log in

Queueing models for cognitive wireless networks with sensing time of secondary users

  • S.I. : QueueStochMod2019
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper considers queueing models for cognitive radio networks that account for the sensing time of secondary users (SUs). In cognitive radio networks, secondary users are allowed to opportunistically use idle channels originally allocated to primary users (PUs). To this end, SUs must sense the state of the channels before transmission. After sensing, if an idle channel is available, the SU can start transmission immediately; otherwise, the SU must carry out another channel sensing. In this paper, we study two retrial queueing models with an unlimited number of sensing SUs, where PUs have preemptive priority over SUs. The two models differ in whether or not an arriving PU can interrupt a SU transmission also in case there are still idle channels available. We show that both models have the same stability condition and that the model without interruptions in case of available idle channels has a slightly lower number of sensing SUs than the model with interruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akutsu, K., & Phung-Duc, T. (2019). Analysis of retrial queues for cognitive wireless networks with sensing time of secondary users. In International Conference on Queueing Theory and Network Applications, Lecture Notes in Computer Science, LNCS, vol. 11688 (pp. 77–91).

  • Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation dynamic spectrum access cognitive radio wireless networks: a survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  • Artalejo, J. R., & Phung-Duc, T. (2012). Markovian retrial queues with two way communication. Journal of Industrial and Management Optimization, 8(4), 781–806.

    Article  Google Scholar 

  • Artalejo, J. R., & Phung-Duc, T. (2013). Single server retrial queues with two way communication. Applied Mathematical Modelling, 37(4), 1811–1822.

    Article  Google Scholar 

  • Diamond, J. E., & Alfa, A. S. (1999). Matrix analytic methods for a multi-server retrial queue with buffer. Top, 7(2), 249–266.

    Article  Google Scholar 

  • Dimitriou, I., & Phung-Duc, T. (2020). Analysis of cognitive radio networks with cooperative communication. In Proceedings of the 13th EAI International Conference on Performance Evaluation Methodologies and Tools (pp. 192–195).

  • Dragieva, V.I., & Phung-Duc, T. (2019). Queueing analysis of cognitive radio networks with finite number of secondary users. In Proceedings of the 25th International Conference on Analytical and Stochastic Modelling Techniques and Applications

  • Dubey, R., Gunasekaran, A., & Sushil and Singh, T. (2015). Building theory of sustainable manufacturing using total interpretive structural modelling. International Journal of Systems Science: Operations & Logistics, 2(4), 231–247.

    Google Scholar 

  • Dudin, A. N., Lee, M. H., Dudina, O., & Lee, S. K. (2016). Analysis of priority retrial queue with many types of customers and servers reservation as a model of cognitive radio system. IEEE Transactions on Communications, 65, 186–199.

    Google Scholar 

  • Falin, G. I. (1975). Aggregate arrival of customers in a one-line system with repeated calls. Ukrainian Mathematical Journal, 28, 437–440.

    Article  Google Scholar 

  • Falin, G. I. (1977). Waiting time in a single-channel queueing system with repeated calls. Moscow University Computational Mathematics and Cybernetics, 4, 83–87.

    Google Scholar 

  • Falin, G. I. (1980). An M/G/1 system with repeated calls in heavy traffic. Moscow University Computational Mathematics and Cybernetics, 6, 48–50.

    Google Scholar 

  • Falin, G. I. (1986). On the waiting-time process in a single-line queue with repeated calls. Journal of Applied Probability, 23, 185–192.

    Article  Google Scholar 

  • Falin, G. I., & Templeton, J. G. C. (1997). Retrial queues. London: Chapman & Hall.

    Book  Google Scholar 

  • Gharaei, A., Shekarabi, S. A. H., Karimi, M., Pourjavad, E., & Amjadian, A. (2019). An integrated stochastic EPQ model under quality and green policies: Generalised cross decomposition under the separability approach. International Journal of Systems Science: Operations & Logistics, 1–13.

  • Gharaei, A., Hoseini Shekarabi, S. A., & Karimi, M. (2020). Modelling and optimal lot-sizing of the replenishments in constrained, multi-product and bi-objective EPQ models with defective products: Generalised cross decomposition. International Journal of Systems Science: Operations & Logistics, 7(3), 262–274.

    Google Scholar 

  • Gharaei, A., Karimi, M., & Shekarabi, S. A. H. (2019). An integrated multi-product, multi-buyer supply chain under penalty, green, and quality control polices and a vendor managed inventory with consignment stock agreement: The outer approximation with equality relaxation and augmented penalty algorithm. Applied Mathematical Modelling, 69, 223–254.

    Article  Google Scholar 

  • Gharaei, A., Karimi, M., & Shekarabi, S. A. H. (2020). Joint economic lot-sizing in multi-product multi-level integrated supply chains: Generalized benders decomposition. International Journal of Systems Science: Operations & Logistics, 7(4), 309–325.

    Google Scholar 

  • Giri, B. C., & Bardhan, S. (2014). Coordinating a supply chain with backup supplier through buyback contract under supply disruption and uncertain demand. International Journal of Systems Science: Operations & Logistics, 1(4), 193–204.

    Google Scholar 

  • Hoseini Shekarabi, S. A., Gharaei, A., & Karimi, M. (2019). Modelling and optimal lot-sizing of integrated multi-level multi-wholesaler supply chains under the shortage and limited warehouse space: Generalised outer approximation. International Journal of Systems Science: Operations & Logistics, 6(3), 237–257.

    Google Scholar 

  • Keilson, J., Cozzolino, J., & Young, H. (1968). A service system with unfilled requests repeated. Operations Research, 6, 1126–1137.

    Article  Google Scholar 

  • Kim, K. (2012). T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks. Computer and Operations Research, 39(7), 1394–1401.

    Article  Google Scholar 

  • Kleinrock, L., & Tobagi, F. (1975). Packet switching in radio channels: Part I -Carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23(12), 1400–1416.

    Article  Google Scholar 

  • Konishi, Y., Masuyama, H., Kasahara, S., & Takahashi, Y. (2013). Performance analysis of dynamic spectrum handoff scheme with variable bandwidth demand of secondary users for cognitive radio networks. Wireless Networks, 19, 607–617.

    Article  Google Scholar 

  • Kumar, K., Prakash, A., & Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: a classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161–188.

    Article  Google Scholar 

  • Liang, Y. C., Chen, K. C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  • Mitrany, I. L., & Avi-Itzhak, B. (1968). A many-server queue with service interruptions. Operations Research, 16(3), 628–638.

    Article  Google Scholar 

  • Morozov, E., Rogozin, S., Nguyen, Q. H. & Phung-Duc, T. (2020) Modified Erlang loss system for cognitive wireless networks. Submitted to Journal of Mathematical Sciences.

  • Nazarov, A., Phung-Duc, T., & Paul, S. (2018). Unreliable single-server queue with two-way communication and retrials of blocked and interrupted calls for cognitive radio networks. In Distributed Computer and Communication Networks (pp. 276–287).

  • Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models: An algorithmic approach. New York: Dover Publications Inc.

    Google Scholar 

  • Neuts, M. F., & Rao, B. M. (1990). Numerical investigation of a multiserver retrial model. Queueing Systems, 7(2), 169–189.

    Article  Google Scholar 

  • Piran, M. J., Pham, Q. V., Islam, S. M. R., Cho, S., Bae, B., Suh, D. Y., & Han, Z. (2020). Multimedia communication over cognitive radio networks from QoS/QoE perspective: A comprehensive survey. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2020.102759.

    Article  Google Scholar 

  • Rabbani, M., Hosseini-Mokhallesun, S. A. A., Ordibazar, A. H., & Farrokhi-Asl, H. (2020). A hybrid robust possibilistic approach for a sustainable supply chain location-allocation network design. International Journal of Systems Science: Operations & Logistics, 7(1), 60–75.

    Google Scholar 

  • Sakurai, H., & Phung-Duc, T. (2015). Two-way communication retrial queues with multiple types of outgoing calls. Top, 23(2), 466–492.

    Article  Google Scholar 

  • Salameh, O., De Turck, K., Bruneel, H., Blondia, C., & Wittevrongel, S. (2017). Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff. Telecommunication Systems, 65(3), 539–550.

    Article  Google Scholar 

  • Sarkar, S., & Giri, B. C. (2020). Stochastic supply chain model with imperfect production and controllable defective rate. International Journal of Systems Science: Operations & Logistics, 7(2), 133–146.

    Google Scholar 

  • Shah, N. H., Chaudhari, U., & Cardenas-Barron, L. E. (2020). Integrating credit and replenishment policies for deteriorating items under quadratic demand in a three echelon supply chain. International Journal of Systems Science: Operations & Logistics, 7(1), 34–45.

    Google Scholar 

  • Tobagi, F., & Kleinrock, L. (1975). Packet switching in radio channels: Part II - The hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.

    Article  Google Scholar 

  • Torkestani, J. A., & Meybodi, M. R. (2016). Channel assignment in wireless mobile ad hoc networks. Mobile Ad Hoc Networks: Current Status and Future Trends, 251–277.

  • Tweedie, R. L. (1975). Sufficient conditions for regularity, recurrence and ergodicity and Markov processes. Mathematical Proceedings of the Cambridge Philosophical Society, 78, 125–136.

    Article  Google Scholar 

  • Wang, B., Ji, Z., Liu, K. J. R., & Clancy, T. C. (2009). Primary prioritized Markov approach for dynamic spectrum allocation. IEEE Transactions on Wireless Commununication, 8(4), 1854–1865.

    Article  Google Scholar 

  • Wang, C. W., & Wang, L. C. (2012). Analysis of reactive spectrum handoff in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(10), 2016–2028.

    Article  Google Scholar 

  • Wong, E. W. A., & Foh, C. H. (2009). Analysis of cognitive radio spectrum access with finite user population. IEEE Communications Letters, 13(5), 294–296.

    Article  Google Scholar 

  • Yin, S., Nishi, T., & Zhang, G. (2016). A game theoretic model for coordination of single manufacturer and multiple suppliers with quality variations under uncertain demands. International Journal of Systems Science: Operations & Logistics, 3(2), 79–91.

    Google Scholar 

  • Zhang, Y., Wang, J., & Li, W. W. (2019). Optimal pricing strategies in cognitive radio networks with heterogeneous secondary users and retrials. IEEE Access, 7, 30937–30950.

    Article  Google Scholar 

Download references

Acknowledgements

The research of Tuan Phung-Duc was supported in part by JSPS KAKENHI Grant Number 18K18006. This work is partially funded by an EOS grant from the Belgian Research Councils FWO and FNRS [Grant Number 30452698].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Phung-Duc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Stability condition

Appendix A: Stability condition

In this appendix, we obtain a sufficient condition for our multiserver models.

1.1 A.1 Markov chain

As in Sect. 4, we define \(N(t), C_{1}(t)\) and \(C_{2}(t)\) as the number of SUs in the orbit, the number of PUs on transmission and the number of SUs on transmission, respectively. Those three random variables can be used as state variables to describe the Markov chain of the cognitive radio system. However, we rearrange the state description for the simplicity of the stability analysis. To this end, we define \(B(t) = C_{1}(t) + C_{2}(t)\) as the number of PUs or SUs on transmission. It can be shown that \(\{ X(t) = (N(t), B(t), C_{1}(t)) \ | \ t \ge 0\}\) forms a continuous-time Markov chain on the state space \({\mathcal {S}}\) defined by

$$\begin{aligned} {\mathcal {S}} = \{(i,j,k);\, i \in {\mathbb {Z}}_{+}, j=0,1,\ldots ,c,\, k=0,1,\ldots ,j\, \}. \end{aligned}$$

Then it is easy to see that the Markov chain \(\{X(t) \ | \ t \ge 0\}\) is a level-dependent quasi birth-and-death (QBD) process with infinitesimal generator \({\varvec{Q}}\) in the form

$$\begin{aligned} {\varvec{Q}}&= \begin{bmatrix} {\varvec{Q}}_{1}^{(0)} &{}\quad {\varvec{Q}}_{0}^{(0)} &{}\quad {\varvec{O}} &{}\quad \cdots \\ {\varvec{Q}}_{2}^{(1)} &{}\quad {\varvec{Q}}_{1}^{(1)} &{}\quad {\varvec{Q}}_{0}^{(1)} &{}\quad \ddots &{} \\ {\varvec{O}} &{}\quad {\varvec{Q}}_{2}^{(2)} &{}\quad {\varvec{Q}}_{1}^{(2)} &{}\quad \ddots &{} \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{} \\ \end{bmatrix}. \end{aligned}$$

The block matrices \({\varvec{Q}}_{0}^{(i)}\) and \({\varvec{Q}}_{1}^{(i)}\) for \(i \in {\mathbb {Z}}_{+}\), and \({\varvec{Q}}_{2}^{(i)}\) for \(i \in {\mathbb {Z}}_{+} \setminus \{0\}\) have block structure forms:

$$\begin{aligned} {\varvec{Q}}^{(i)}_{0} = \begin{bmatrix} \varvec{\varLambda }_{0,0} &{}\quad {\varvec{O}} &{}\quad \cdots &{}\quad \cdots &{}\quad {\varvec{O}} \\ {\varvec{O}} &{}\quad \varvec{\varLambda }_{1,1} &{}\quad \ddots &{}\quad &{} \quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad &{}\quad \ddots &{}\quad \ddots &{}\quad {\varvec{O}} \\ {\varvec{O}} &{}\quad \cdots &{}\quad \cdots &{}\quad {\varvec{O}} &{}\quad \varvec{\varLambda }_{c,c} \end{bmatrix}, \quad {\varvec{Q}}^{(i)}_{2} = i\sigma \begin{bmatrix} {\varvec{O}} &{}\quad {\varvec{E}}_{0,1} &{}\quad {\varvec{O}} &{}\quad \cdots &{}\quad {\varvec{O}} \\ {\varvec{O}} &{}\quad {\varvec{O}} &{}\quad {\varvec{E}}_{1,2} &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad {\varvec{O}} \\ \vdots &{} \quad &{}\quad \ddots &{}\quad {\varvec{O}} &{}\quad {\varvec{E}}_{c-1,c} \\ {\varvec{O}} &{}\quad \cdots &{} \quad \cdots &{}\quad {\varvec{O}} &{}\quad {\varvec{O}} \end{bmatrix}, \\ {\varvec{Q}}^{(i)}_{1} = \begin{bmatrix} \varvec{L}_{0,0} - i\sigma \varvec{I} &{}\quad \varvec{B}_{0,1} &{}\quad {\varvec{O}} &{}\quad \cdots &{}\quad {\varvec{O}} \\ \varvec{D}_{1,0} &{}\quad \varvec{L}_{1,1} - i\sigma \varvec{I} &{}\quad \varvec{B}_{1,2} &{}\quad \ddots &{}\quad \vdots \\ {\varvec{O}} &{}\quad \varvec{D}_{2,1} &{}\quad \ddots &{}\quad \ddots &{}\quad {\varvec{O}} \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \varvec{L}_{c-1,c-1} - i\sigma \varvec{I} &{}\quad \varvec{B}_{c-1,c} \\ {\varvec{O}} &{}\quad \cdots &{}\quad {\varvec{O}} &{}\quad \varvec{D}_{c,c-1} &{}\quad \varvec{L}_{c,c} \end{bmatrix}. \end{aligned}$$

The block matrices \(\varvec{\varLambda }_{j,j}, \varvec{L}_{j,j}\) for \(j=0,1,\ldots ,c\), and \(\varvec{E}_{j-1,j}, \varvec{B}_{j-1,j}, \varvec{D}_{j,j-1}\) for \(j=1,2,\ldots ,c\) are explicitly written as follows:

$$\begin{aligned}&\varvec{\varLambda }_{j,j} = \begin{bmatrix} \lambda _{2} &{}\quad \lambda _{0,j}^{*} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad \lambda _{2} &{}\quad \lambda _{1,j-1}^{*} &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad 0 \\ \vdots &{}\quad &{}\quad \ddots &{}\quad \lambda _{2} &{}\quad \lambda _{j-1,1}^{*} \\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0 &{}\quad \lambda _{2} \end{bmatrix}, \quad \varvec{E}_{j-1,j} = \begin{bmatrix} 1 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad 0 &{}\quad \vdots \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad 1 &{}\quad 0 \end{bmatrix}, \\&\varvec{B}_{j-1,j} = \begin{bmatrix} 0 &{}\quad \lambda _{0,j-1}^{**} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad 0 &{}\quad \lambda _{1,j-2}^{**} &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad \lambda _{j-1,0}^{**} \end{bmatrix}, \quad \\&\varvec{D}_{j,j-1} = \begin{bmatrix} j\mu _{2} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \mu _{1} &{}\quad (j-1)\mu _{2} &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad \ddots &{}\quad \ddots &{}\quad 0 \\ \vdots &{}\quad \ddots &{}\quad (j-1)\mu _{1} &{}\quad \mu _{2} \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad j\mu _{1} \end{bmatrix}, \\&\varvec{L}_{j,j} = - \text {diag} \{ q_{j,0}, q_{j,1}, \ldots , q_{j,j} \}, \end{aligned}$$

where \(q_{j,k}\, (j = 0,1,\ldots ,c)\) are given by \(q_{j,k} = \lambda _{1} + \lambda _{2} + j\mu _{1} + (c-j)\mu _{2}\) if \(k=0,1,\ldots ,j-1\), and \(q_{j,k} = \lambda _{2} + j\mu _{1} + (c-j)\mu _{2}\) if \(k=j\). We specify \(\lambda _{i,j}^{*}\) and \(\lambda _{i,j}^{**}\) depending on the selection policy of an available channel on PU arrival. If an idle channel is assigned to an arriving PU, and the PU preempts one of the SUs on transmission only when no idle channels are available, then

$$\begin{aligned} \lambda _{i,j}^{*} = \lambda _{1}\delta _{i+j,c}, \quad \lambda _{i,j}^{**} = \lambda _{1}(1-\delta _{i+j,c}), \quad i=0,\ldots ,c-1, \, j = 0, \ldots , c-i, \end{aligned}$$

where \(\delta _{i+j,c} = 1\) if \(i+j = c\), and \(\delta _{i+j,c} = 0\) if \(i+j \ne c\). If a channel randomly selected among the idle channels or the ones occupied by SUs is assigned to an arriving PU, then

$$\begin{aligned} \lambda _{i,j}^{*} = \lambda _{1}\frac{j}{c-i}, \quad \lambda _{i,j}^{**} = \lambda _{1}\frac{c-i-j}{c-i}, \quad i=0,\ldots ,c-1, \, j = 0, \ldots , c-i. \end{aligned}$$

It should be noted that both policies yield us the same \(\varvec{\varLambda }_{c,c}\) as

$$\begin{aligned} \varvec{\varLambda }_{c,c} = \begin{bmatrix} \lambda _{2} &{}\quad \lambda _{1} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad \lambda _{2} &{}\quad \lambda _{1} &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad 0 \\ \vdots &{}\quad &{}\quad \ddots &{}\quad \lambda _{2} &{}\quad \lambda _{1} \\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0 &{}\quad \lambda _{2} \end{bmatrix}. \end{aligned}$$

A description of the block matrices is summarized in Table 2.

Table 2 Description of block matrices

1.2 A.2 Stability analysis

Let \(\varvec{\varDelta }_{c}\) be a diagonal matrix defined by \(\varvec{\varDelta }_{c} = -\varvec{L}_{c,c}\). We define square matrices

$$\begin{aligned} \varvec{A}_{0} = \varvec{\varDelta }_{c}^{-1}\varvec{\varLambda }_{c,c}, \quad \varvec{A}_{1} = \varvec{I} + \varvec{\varDelta }_{c}^{-1}\varvec{L}_{c,c}, \quad \varvec{A}_{2} = \varvec{\varDelta }_{c}^{-1}\varvec{D}_{c,c-1} \varvec{E}_{c-1,c}. \end{aligned}$$

\(\varvec{A}_{0}, \varvec{A}_{1}\) and \(\varvec{A}_{2}\) are non-negative matrices and \(\varvec{A} = \varvec{A}_{0} + \varvec{A}_{1} + \varvec{A}_{2}\) is a stochastic matrix. Since \(\varvec{A}\) is irreducible, the invariant probability vector \(\varvec{\nu }\) of \(\varvec{A}\) is uniquely determined by \(\varvec{\nu }\varvec{A} = \varvec{\nu },\, \varvec{\nu } \varvec{e} = 1\).

Let \(\varvec{A}(z)\) be the matrix defined by

$$\begin{aligned} \varvec{A}(z)&= \varvec{A}_{0} + \varvec{A}_{1} z + \varvec{A}_{2} z^{2}, \quad 0 \le z \le 1. \end{aligned}$$

Let \(\chi (z)\) be the maximal eigenvalue of \(\varvec{A}(z)\) with the right eigenvector \(\varvec{v}(z)\). Since \(\varvec{A}(z)\) is irreducible and non-negative, \(\varvec{v}(z) > \varvec{0}\). If \(\varvec{\nu } \varvec{A}_{0}\varvec{e} < \varvec{\nu }\varvec{A}_{2}\varvec{e}\) and \(\chi (0) > 0\), then \(\chi (z) = z\) has a solution for \(z \in (0,1)\).We denote the solution by \(\eta \). For \(z \in (\eta , 1)\), we have \(\chi (z) < z\) and hence \(\varvec{A}(z) \varvec{v}(z) = \chi (z) \varvec{v}(z) < z \varvec{v}(z)\) (Neuts 1981). We then obtain the following lemma.

Lemma 1

If \(\varvec{\nu } \varvec{A}_{0}\varvec{e} < \varvec{\nu }\varvec{A}_{2}\varvec{e}\) and \(\chi (0) > 0\), we have \(z \in (\eta , 1)\) and \(\varvec{v}(z) > \varvec{0}\) such that

$$\begin{aligned} (\varvec{\varLambda }_{c,c} + z\varvec{L}_{c,c} + z^{2}\varvec{D}_{c,c-1}\varvec{E}_{c-1,c}) \varvec{v}(z) < \varvec{0}. \end{aligned}$$

Proof

The proof is immediately followed from \(\varvec{A}(z) \varvec{v}(z) < z \varvec{v}(z)\). \(\square \)

If we define \(\varvec{Q}_{p} = \varvec{\varLambda }_{c,c} + \varvec{L}_{c,c} + \varvec{D}_{c,c-1}\varvec{E}_{c-1,c}\), then \(\varvec{Q}_{p}\) can be an infinitesimal generator given by

$$\begin{aligned} \varvec{Q}_{p}&= \begin{bmatrix} -\lambda _{1} &{}\quad \lambda _{1} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \mu _{1} &{}\quad -\lambda _{1}-\mu _{1} &{}\quad \lambda _{1} &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad 0 \\ \vdots &{}\quad \ddots &{}\quad (c-1)\mu &{}\quad -\lambda _{1}-(c-1)\mu _{1} &{}\quad \lambda _{1} \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad c\mu _{1} &{}\quad -c\mu _{1} \\ \end{bmatrix}. \end{aligned}$$

Since \(\varvec{Q}_{p}\) is irreducible, the invariant probability vector \(\varvec{\pi } = (\pi _{0}, \pi _{1}, \ldots , \pi _{c})\) satisfying \(\varvec{\pi }\varvec{Q}_{p} = \varvec{0}, \varvec{\pi }\varvec{e} = 1\) is uniquely determined and is given by

$$\begin{aligned} \pi _{0} = \left[ 1+\frac{\lambda _{1}}{\mu _{1}}+\cdots +\frac{1}{c!}\left( \frac{\lambda _{1}}{\mu _{1}}\right) ^{c}\right] ^{-1}, \quad \pi _{j} = \frac{1}{j!}\left( \frac{\lambda _{1}}{\mu _{1}}\right) ^{j} \pi _{0} \quad (j = 1,2,\ldots ,c). \end{aligned}$$

It can be shown that \(\varvec{\nu } \varvec{A}_{0}\varvec{e} < \varvec{\nu }\varvec{A}_{2}\varvec{e}\) is rewritten to be \(\varvec{\pi }\varvec{\varLambda }_{c,c}\varvec{e} < \varvec{\pi }\varvec{D}_{c,c-1}\varvec{e}\). The next theorem gives us a sufficient condition of the ergodicity of \(\{X(t) \ | \ t \ge 0\}\).

Theorem 1

If \(\varvec{\pi }\varvec{\varLambda }_{c,c}\varvec{e} < \varvec{\pi }\varvec{D}_{c,c-1}\varvec{e}\), or equivalently,

$$\begin{aligned} \frac{\lambda _{2}}{\mu _{2}} < \sum _{i=0}^{c}(c-i)\pi _i, \end{aligned}$$
(22)

then \(\{X(t) \ | \ t \ge 0\}\) is regular and ergodic.

Proof

According to Tweedie (1975) or Statement 8, p. 97 in Falin and Templeton (1997), a Markov process with infinitesimal generator \(\varvec{Q} = [q_{s,p}]\) on state space \({\mathcal {S}}\) is regular and ergodic, if there exist a lower bounded function \(\varphi (\cdot )\) on \({\mathcal {S}}\), some finite subset \({\mathcal {S}}_{0} \subset {\mathcal {S}}\) and some \(\epsilon > 0\) such that

$$\begin{aligned} y(s)&= \sum _{p \in {\mathcal {S}}} q_{s, p} \varphi (p) \le -\epsilon \end{aligned}$$

for \(s \notin {\mathcal {S}}_{0}\), and \(y(s) < \infty \) for \(s \in {\mathcal {S}}_{0}\).

We show that the Lyapunov function by Diamond and Alfa (1999) is still effective to our multiserver models of the cognitive network system. To construct the Lyapunov function, we define a column vector \(\varvec{w}(z)\) of size \((c+1)(c+2)/2\) by

$$\begin{aligned} \varvec{w}(z)&= (\varvec{I} + z \varvec{K} + z^{2} \varvec{K}^{2} + \cdots + z^{c} \varvec{K}^{c}) \begin{bmatrix} \varvec{0} \\ \varvec{v}(z) \end{bmatrix}, \end{aligned}$$

where \(\varvec{K}\) is determined by the relation \(\varvec{Q}^{(i)}_{2} = i\sigma \varvec{K}\, (i \in {\mathbb {Z}}_{+} \setminus \{0\})\). For \(z \in (\eta , 1)\), we also define a column vector \(\varvec{\varphi }^{(k)}\) of size \((c+1)(c+2)/2\) by

$$\begin{aligned} \varvec{\varphi }^{(i)}&= z^{-i} (\varvec{w}(z) + b \varvec{e}) = z^{-i} \left( \begin{bmatrix} z^{c} \varvec{w}_{0}(z) \\ z^{c-1} \varvec{w}_{1}(z) \\ \vdots \\ z \varvec{w}_{c-1}(z) \\ \varvec{w}_{c}(z) \end{bmatrix} + b\varvec{e} \right) , \quad i \in {\mathbb {Z}}_{+}, \end{aligned}$$

where \(b \in (0,1)\), \(\varvec{w}_{c}(z) = \varvec{v}(z)\), and \(\varvec{w}_{j}(z) = \varvec{E}_{j,j+1}\varvec{w}_{j+1}(z)\) for \(j=0, 1, \ldots ,c-1\). It is clear that each element of \(\varvec{\varphi }^{(i)}\) is lower bounded. We define a column vector \(\varvec{\varphi }\) composed of \(\varvec{\varphi }^{(i)}\)’s by

$$\begin{aligned} \varvec{\varphi }&= [(\varvec{\varphi }^{(0)})^{{\mathsf {T}}}, (\varvec{\varphi }^{(1)})^{{\mathsf {T}}}, \ldots , (\varvec{\varphi }^{(i)})^{{\mathsf {T}}}, \ldots ]^{{\mathsf {T}}}. \end{aligned}$$

Let \(\ell (i) = \{(i,j,k) \in {\mathcal {S}} \mid j = 0,1,\ldots ,c, k = 0,1,\ldots ,j\}\) and \(\varvec{y}^{(i)}\) be a column vector of size \((c+1)(c+2)/2\) given by the elements of \(\ell (i)\) of \(\varvec{Q}\varvec{\varphi }\), i.e.,

$$\begin{aligned} \varvec{y}^{(i)}&= {\left\{ \begin{array}{ll} \varvec{Q}_{0}^{(0)}\varvec{\varphi }^{(1)} + \varvec{Q}_{1}^{(0)}\varvec{\varphi }^{(0)}, &{} i = 0, \\ \varvec{Q}_{0}^{(i)}\varvec{\varphi }^{(i+1)} + \varvec{Q}_{1}^{(i)}\varvec{\varphi }^{(i)} + \varvec{Q}_{2}^{(i)}\varvec{\varphi }^{(i-1)}, &{} i \in {\mathbb {Z}}_{+} \setminus \{0\}. \end{array}\right. } \end{aligned}$$

For \(i \in {\mathbb {Z}}_{+}\), we have

$$\begin{aligned} \varvec{y}^{(i)}&= z^{-(i+1)} \left( \begin{bmatrix} z^{c} \varvec{f}_{0}(z) \\ z^{c-1} \varvec{f}_{1}(z) \\ \vdots \\ z \varvec{f}_{c-1}(z) \\ \varvec{f}_{c}(z) \end{bmatrix} + b(1-z) \begin{bmatrix} \varvec{\varLambda }_{0,0}\varvec{e} \\ \varvec{\varLambda }_{1,1}\varvec{e} \\ \vdots \\ \varvec{\varLambda }_{c-1,c-1}\varvec{e} \\ \varvec{\varLambda }_{c,c}\varvec{e} \end{bmatrix} -i\sigma bz(1-z) \begin{bmatrix} \varvec{e} \\ \varvec{e} \\ \vdots \\ \varvec{e} \\ \varvec{0} \end{bmatrix} \right) , \end{aligned}$$

where

$$\begin{aligned} \varvec{f}_{0}(z)&= \varvec{B}_{0,1} \varvec{w}_{1}(z) + (\varvec{\varLambda }_{0,0} + z\varvec{L}_{0,0}) \varvec{w}_{0}(z), \end{aligned}$$

and for \(j=1,2,\ldots ,c-1\)

$$\begin{aligned} \varvec{f}_{j}(z)&= \varvec{B}_{j,j+1} \varvec{w}_{j+1}(z) + (\varvec{\varLambda }_{j,j} + z\varvec{L}_{j,j}) \varvec{w}_{j}(z) + z^{2} \varvec{D}_{j,j-1} \varvec{w}_{j-1}(z), \end{aligned}$$

and

$$\begin{aligned} \varvec{f}_{c}(z)&= (\varvec{\varLambda }_{c,c} + z \varvec{L}_{c,c} + z^{2} \varvec{D}_{c,c-1} \varvec{E}_{c-1,c})\varvec{w}_{c}(z). \end{aligned}$$

By Lemma 1, we can choose \(z \in (\eta , 1)\) such that \(\varvec{f}_{c}(z) < \varvec{0}\) if \(\varvec{\nu } \varvec{A}_{0}\varvec{e} < \varvec{\nu }\varvec{A}_{2}\varvec{e}\) which is equivalent to \(\varvec{\pi }\varvec{\varLambda }_{c,c}\varvec{e} < \varvec{\pi }\varvec{D}_{c,c-1}\varvec{e}\). Therefore, there exists some \(b \in (0,1)\) such that

$$\begin{aligned} \varvec{f}_{c}(z) + b(1-z)\varLambda _{c,c}\varvec{e}&< \varvec{0}. \end{aligned}$$

Clearly, we can choose an integer \(i_{0}\) such that

$$\begin{aligned} z^{c-j} \varvec{f}_{j}(z) + b(1-z)\varLambda _{j,j}\varvec{e} - i\sigma bz(1-z) \varvec{e}&< \varvec{0} \end{aligned}$$

for all \(i > i_{0}\) and \(j=0,1,\ldots ,c-1\). Therefore, there exists some \(\epsilon > 0\) such that

$$\begin{aligned} \varvec{Q}\varvec{\varphi }&\le -\epsilon \varvec{e}, \end{aligned}$$

except for some finite subset \({\mathcal {S}}_{0} \subset {\mathcal {S}}\), from which we conclude that \(\{X(t) \ | \ t \ge 0 \}\) is ergodic if \(\varvec{\pi }\varvec{\varLambda }_{c,c}\varvec{e} < \varvec{\pi }\varvec{D}_{c,c-1}\varvec{e}\). Note here that \(\varvec{\pi }\) is the stationary distribution of the Erlang loss system M/M/c/c with arrival rate \(\lambda _{1}\) and service rate \(\mu _{1}\). It is easy to see that (22) follows from \(\varvec{\pi }\varvec{\varLambda }_{c,c}\varvec{e} < \varvec{\pi }\varvec{D}_{c,c-1}\varvec{e}\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phung-Duc, T., Akutsu, K., Kawanishi, K. et al. Queueing models for cognitive wireless networks with sensing time of secondary users. Ann Oper Res 310, 641–660 (2022). https://doi.org/10.1007/s10479-021-04118-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04118-9

Keywords

Navigation