Skip to main content
Log in

Weissella confusa CGMCC 19,308 Strain Protects Against Oxidative Stress, Increases Lifespan, and Bacterial Disease Resistance in Caenorhabditis elegans

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the antioxidant activity of Weissella confusa CGMCC 19,308 and its influence on longevity and host defense against Salmonella Typhimurium of Caenorhabditis elegans. The CFCS (cell-free culture supernatant) of W. confusa CGMCC 19,308 possessed DPPH radicals, hydroxyl radicals, and superoxide anion scavenging activity. The lifespan of the C. elegans fed W. confusa CGMCC 19,308 was significantly (p < 0.001) longer than that of worms fed Escherichia coli OP50. Moreover, worms fed W. confusa CGMCC 19,308 were more resistant to oxidative stress induced by hydrogen peroxide and S. Typhimurium infection. RNA-seq analysis showed that the most significantly differentially expressed genes (DEGs) in C. elegans fed with W. confusa CGMCC 19,308 were mainly col genes (col-43, col-2, col-40, col-155, col-37), glutathione–S-transferase (GST)-related genes (gst-44, gst-9, gst-17, gst-18, gstk-2), cnc-9 (immune-related gene), and sod-5 (superoxide dismutase). These results indicated that cuticle collagen synthesis, immunity, and antioxidant defense (AOD) system of C. elegans were affected after being fed with W. confusa CGMCC 19,308 instead of E. coli OP50. Our study suggested W. confusa CGMCC 19,308 had the antioxidant activity and could prolong lifespan and enhance the host defense against S. Typhimurium of C. elegans. This study provided new evidences for the W. confusa CGMCC 19,308 as a potential probiotic candidate for anti-aging and anti-bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food London, Ontario, Canada, April 30 and May 1, 2002. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed on 1 May 2002.

  2. Park KY, Jeong JK, Lee YE, DailyIII JW (2014) Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 17:6–20. https://doi.org/10.1089/jmf.2013.3083

    Article  CAS  PubMed  Google Scholar 

  3. Nakagawa H, Shiozaki T, Kobatake E, Hosoya T, Moriya T, Sakai F, Taru H, Miyazaki T (2016) Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 15:227–236. https://doi.org/10.1111/acel.12431

    Article  CAS  PubMed  Google Scholar 

  4. Grompone G, Martorell P, Llopis S, Gonzalez N, Genoves S, Paula Mulet A, Fernandez-Calero T, Tiscornia I, Bollati-Fogolin M, Chambaud I, Foligne B, Montserrat A, Ramon D (2012) Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS ONE 7:e52493. https://doi.org/10.1111/acel.12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bjorkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, Korkeala HJ, Vandamme P (2002) Taxonomic study of Weissella confusa and description of Weissella cibaria sp nov., detected in food and clinical samples. Int J Syst Evol Microbiol 52:141–148. https://doi.org/10.1099/00207713-52-1-141

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda T, Yasui C, Hoshino K, Arikawa K, Nishikawa Y (2007) Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella entetica serovar Enteritidis. Appl Environ Microbiol 73:6404–6409. https://doi.org/10.1128/aem.00704-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Collins MD, Samelis J, Metaxopoulos J, Wallbanks S (1993) Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603. https://doi.org/10.1111/j.1365-2672.1993.tb01600.x

    Article  CAS  PubMed  Google Scholar 

  8. Fairfax MR, Lephart PR, Salimnia H (2014) Weissella confusa: problems with identification of an opportunistic pathogen that has been found in fermented foods and proposed as a probiotic. Front Microbiol 5:254. https://doi.org/10.3389/fmicb.2014.00254

    Article  PubMed  PubMed Central  Google Scholar 

  9. Quattrini M, Korcari D, Ricci G, Fortina MG (2020) A polyphasic approach to characterize Weissella cibaria and Weissella confusa strains. J Appl Microbiol 128:500–512. https://doi.org/10.1111/jam.14483

    Article  CAS  PubMed  Google Scholar 

  10. Benhouna IS, Heumann A, Rieu A, Guzzo J, Kihal M, Bettache G, Champion D, Coelho C, Weidmann S (2019) Exopolysaccharide produced by Weissella confusa: chemical characterisation, rheology and bioactivity. Int Dairy J 90:88–94. https://doi.org/10.1016/j.idairyj.2018.11.006

    Article  CAS  Google Scholar 

  11. Rizzello CG, Coda R, Wang Y, Verni M, Kajala I, Katina K, Laitila A (2019) Characterization of indigenous Pediococcus pentosaceus, Leuconostoc kimchii, Weissella cibaria and Weissella confusa for faba bean bioprocessing. Int J Food Microbiol 302:24–34. https://doi.org/10.1016/j.ijfoodmicro.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  12. Le B, Yang SH (2018) Isolation of Weissella strains as potent probiotics to improve antioxidant activity of salted squid by fermentation. J Appl Biol Chem 61:93–100. https://doi.org/10.3839/jabc.2018.014

    Article  Google Scholar 

  13. Ahamefule CS, Qin Q, Odiba AS, Li S, Moneke AN, Ogbonna JC, Jin C, Wang B, Fang W (2020) Caenorhabditis elegans-based Aspergillus fumigatus infection model for evaluating pathogenicity and drug efficacy. Front Cell Infect Microbiol 10:320. https://doi.org/10.3389/fcimb.2020.00320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hulme SE, Whitesides GM (2011) Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research. Angew Chem Int Ed Engl 50:4774–4807. https://doi.org/10.1002/anie.201005461

    Article  CAS  PubMed  Google Scholar 

  15. Gruber J, Ng LF, Poovathingal SK, Halliwell B (2009) Deceptively simple but simply deceptive - Caenorhabditis elegans lifespan studies: considerations for aging and antioxidant effects. FEBS Lett 583:3377–3387. https://doi.org/10.1016/j.febslet.2009.09.051

    Article  CAS  PubMed  Google Scholar 

  16. Kurz CL, Tan MW (2004) Regulation of aging and innate immunity in C. elegans. Aging Cell 3:185–193. https://doi.org/10.1111/j.1474-9728.2004.00108.x

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Liu W, Chu W (2020) Isolation and preliminary screening of potentially probiotic Weissella confusa strains from healthy human feces by culturomics. Microb Pathog 147:104356. https://doi.org/10.1016/j.micpath.2020.104356

    Article  CAS  PubMed  Google Scholar 

  18. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Article  CAS  Google Scholar 

  19. Stiernagle T (2006) Maintenance of C. elegans. WormBook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.101.1

  20. Shi Y, Cui X, Gu S, Yan X, Li R, Xia S, Chen H, Ge J (2019) Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from northeast China. Probiotics Antimicrob Proteins 11:1086–1099. https://doi.org/10.1007/s12602-018-9452-5

    Article  CAS  PubMed  Google Scholar 

  21. Yu HS, Jang HJ, Lee NK, Paik HD (2019) Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. LWT 112:108229. https://doi.org/10.1016/j.lwt.2019.05.127

    Article  CAS  Google Scholar 

  22. Shivangi S, Devi PB, Ragul K, Shetty PH (2020) Probiotic potential of Bacillus strains isolated from an acidic fermented food Idli. Probiotics Antimicrob Proteins 12:1502–1513. https://doi.org/10.1007/s12602-020-09650-x

    Article  CAS  PubMed  Google Scholar 

  23. Azat R, Liu Y, Li W, Kayir A, Lin DB, Zhou WW, Zheng XD (2016) Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. J Zhejiang Univ Sci B 17:597–609. https://doi.org/10.1631/jzus.B1500250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martorell P, Forment JV, de Llanos R, Monton F, Llopis S, Gonzalez N, Genoves S, Cienfuegos E, Monzo H, Ramon D (2011) Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. J Agric Food Chem 59:2077–2085. https://doi.org/10.1021/jf104217g

    Article  CAS  PubMed  Google Scholar 

  25. Kato M, Hamazaki Y, Sun S, Nishikawa Y, Kage-Nakadai E (2018) Clostridium butyricum MIYAIRI 588 increases the lifespan and multiple-stress resistance of Caenorhabditis elegans. Nutrients 10:1921. https://doi.org/10.3390/nu10121921

    Article  CAS  PubMed Central  Google Scholar 

  26. Ling Y, Teng LL, Hua J, Li DS, Luo SH, Liu YC, Liu Y, Li SH (2019) Leucosceptroid B from glandular trichomes of Leucosceptrum canum reduces fat accumulation in Caenorhabditis elegans through suppressing unsaturated fatty acid biosynthesis. Chin J Nat Med 17:892–899. https://doi.org/10.1016/S1875-5364(19)30109-8

    Article  PubMed  Google Scholar 

  27. Dar MA, Ahmed R, Urwat U, Ahmad SM, Dar PA, Kushoo ZA, Dar TA, Mumtaz PT, Bhat SA, Amin U, Shabir N, Bhat HF, Shah RA, Ganai NA, Heidari M (2018) Expression kinetics of natural resistance associated macrophage protein (NRAMP) genes in Salmonella Typhimurium-infected chicken. BMC Vet Res 14:1746–6148. https://doi.org/10.1186/s12917-018-1510-4

    Article  CAS  Google Scholar 

  28. Ankaiah D, Mitra S, Srivastava D, Madasamy S, Ayyanna R, Jha N, Arul V (2021) Probiotic characterization of bacterial strains from fermented South Indian tomato pickle and country chicken intestine having antioxidative and antiproliferative activities. J Appl Microbiol. https://doi.org/10.1111/jam.14991. Online ahead of print.

  29. Xiong L, Ni X, Niu L, Zhou Y, Wang Q, Khalique A, Liu Q, Zeng Y, Shu G, Pan K, Jing B, Zeng D (2019) Isolation and preliminary screening of a Weissella confusa strain from giant panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 11:535–544. https://doi.org/10.1007/s12602-018-9402-2

    Article  CAS  PubMed  Google Scholar 

  30. Lakra AK, Domdi L, Hanjon G, Tilwani YM, Arul V (2020) Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT 125:109261. https://doi.org/10.1016/j.lwt.2020.109261

    Article  CAS  Google Scholar 

  31. Lakra AK, Ramatchandirane M, Kumar S, Suchiang K, Arul V (2021) Physico-chemical characterization and aging effects of fructan exopolysaccharide produced by Weissella cibaria MD2 on Caenorhabditis elegans. LWT 143:111100. https://doi.org/10.1016/j.lwt.2021.111100

    Article  CAS  Google Scholar 

  32. Martorell P, Llopis S, González N, Chenoll E, López-Carreras N, Aleixandre A, Chen Y, Karoly ED, Ramon D, Genovés S (2016) Probiotic strain Bifidobacterium animalis subsp. lactis CECT 8145 reduces fat content and modulates lipid metabolism and antioxidant response in Caenorhabditis elegans. J Agric Food Chem 4:3462–3472. https://doi.org/10.1021/acs.jafc.5b05934

    Article  CAS  Google Scholar 

  33. Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS (2021) Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 697:108665. https://doi.org/10.1016/j.abb.2020.108665

    Article  CAS  PubMed  Google Scholar 

  34. Jin X, He Y, Liu Z, Zhou Y, Chen W (2020) Lactic acid bacteria exhibit similar antioxidant capacities in: Caenorhabditis elegans - and Campylobacter jejuni -infected mice. RSC Adv 10: 3329–3342. https://doi.org/10.1039/C9RA06105C

  35. Schifano E, Zinno P, Guantario B, Roselli M, Marcoccia S, Devirgiliis C, Uccelletti D (2019) The foodborne strain Lactobacillus fermentum MBC2 triggers pept-1-dependent pro-longevity effects in Caenorhabditis elegans. Microorganisms 7:45. https://doi.org/10.3390/microorganisms7020045

    Article  CAS  PubMed Central  Google Scholar 

  36. Sim I, Park KT, Kwon G, Koh JH, Lim YH (2018) Probiotic potential of Enterococcus faecium isolated from chicken cecum with immunomodulating activity and promoting longevity in Caenorhabditis elegans. J Microbiol Biotechnol 28:883–892. https://doi.org/10.4014/jmb.1802.02019

    Article  CAS  PubMed  Google Scholar 

  37. Kwon G, Lee J, Lim YH (2016) Dairy propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 6:31713. https://doi.org/10.1038/srep31713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou M, Liu X, Yu H, Yin X, Nie SP, Xie MY, Chen W, Gong J (2018) Cell signaling of Caenorhabditis elegans in response to enterotoxigenic Escherichia coli infection and Lactobacillus zeae protection. Front Immunol 9:1745. https://doi.org/10.3389/fimmu.2018.01745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komura T, Ikeda T, Yasui C, Saeki S, Nishikawa Y (2013) Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology 14:73–87. https://doi.org/10.1007/s10522-012-9411-6

    Article  CAS  PubMed  Google Scholar 

  40. Noureen S, Riaz A, Arshad M, Arshad N (2018) In vitro selection and in vivo confirmation of the antioxidant ability of Lactobacillus brevis MG000874. J Appl Microbiol 126:1221–1232. https://doi.org/10.1111/jam.14189

    Article  CAS  Google Scholar 

  41. Kamaladevi A, Ganguli A, Kumar M, Balamurugan K (2013) Lactobacillus casei protects malathion induced oxidative stress and macromolecular changes in Caenorhabditis elegans. Pestic Biochem Physiol 105:213–223. https://doi.org/10.1016/j.pestbp.2013.02.005

    Article  CAS  Google Scholar 

  42. Engelmann I, Griffon A, Tichit L, Montañana-Sanchis F, Wang J, Reinke V, Waterston RH, Hillier LW, Ewbank JJ (2011) A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 6: e19055. https://doi.org/10.1371/journal.pone.0019055

  43. Zugasti O, Ewbank JJ (2009) Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10:249–256. https://doi.org/10.1038/ni.1700

    Article  CAS  PubMed  Google Scholar 

  44. Remondi SAC, Burgwyn FB, Souza AVD, Elamparithi J, Lopes CA, Eleftherios MJG (2018) Pathogenesis of the Candida parapsilosis complex in the model host Caenorhabditis elegans. Genes 9:401. https://doi.org/10.3390/genes9080401

    Article  CAS  Google Scholar 

  45. Mesbahi H, Pho KB, Tench AJ, Guerrero VLL, Macneil LT (2020) Cuticle collagen expression is regulated in response to environmental stimuli by the GATA transcription factor ELT-3 in Caenorhabditis elegans. Genetics 215:483–495. https://doi.org/10.1534/genetics.120.303125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ewald CY, Landis JN, Abate JP, Murphy CT, Blackwell TK (2014) Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519:97–101. https://doi.org/10.1038/nature14021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Teuscher AC, Statzer C, Pantasis S, Bordoli MR, Ewald CY (2019) Assessing collagen deposition during aging in mammalian tissue and in Caenorhabditis elegans. In: Sagi I, Afratis N (ed) Collagen. Methods in Molecular Biology. Humana Press, New York, pp 169–188. https://doi.org/10.1007/978-1-4939-9095-5_13

  48. Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD (2016) The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genom 17:559. https://doi.org/10.1186/s12864-016-2837-5

    Article  CAS  Google Scholar 

Download references

Funding

The study presented in the manuscript was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

W. C. conceived and designed the study. W. W., S. L., and X. H. performed the experiments. W. W. and W. C. analyzed the data and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Weihua Chu.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, S., Heng, X. et al. Weissella confusa CGMCC 19,308 Strain Protects Against Oxidative Stress, Increases Lifespan, and Bacterial Disease Resistance in Caenorhabditis elegans. Probiotics & Antimicro. Prot. 14, 121–129 (2022). https://doi.org/10.1007/s12602-021-09799-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09799-z

Keywords

Navigation