Skip to main content
Log in

PCL-1, a Trypsin-Resistant Peptide, Exerts Potent Activity Against Drug-Resistant Bacteria

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs), which hold tremendous promise in overcoming the emergence of drug resistance, are limited in wide clinical applications due to their instability, especially against trypsin. Herein, we designed six peptide mutants based on the cathelicidin CATHPb2, followed by screening. Pb2-1, which showed the best activity against drug-resistant bacteria among these mutants, was selected to be combined with the trypsin inhibitory loop ORB-C to obtain two hybrid peptides: PCL-1 and Pb2-1TI. Notably, both of the hybrid peptides exhibited a remarkable enhancement in trypsin resistance compared with Pb2-1. The tests showed that PCL-1 displayed broad-spectrum antimicrobial activity that was superior to that of Pb2-1TI. In addition, PCL-1 had relatively lower cytotoxicity than Pb2-1TI towards the L02 and HaCaT cell lines and negligible hemolysis, as well as tolerance to high concentrations of salt, extreme pH, and temperature variations. In vivo, PCL-1 effectively improved the survival rate of mice that were systemically infected with drug-resistant Escherichia coli through efficient bacterial clearance from the blood and organs. With regard to mode of action, PCL-1 damaged the integrity of the bacterial cell membrane and attached to the membrane surface while bound to bacterial genomic DNA to eventually kill the bacteria. Altogether, the trypsin-resistant peptide PCL-1 is expected to be a candidate for the clinical treatment of bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547. https://doi.org/10.1016/j.ijantimicag.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55. https://doi.org/10.1124/pr.55.1.2

    Article  CAS  PubMed  Google Scholar 

  3. Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31(5):379–382. https://doi.org/10.1038/nbt.2572

    Article  CAS  PubMed  Google Scholar 

  4. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med (Berl) 85(4):317–329. https://doi.org/10.1007/s00109-006-0143-4

    Article  CAS  Google Scholar 

  5. Baba MS, Zin NM, Hassan ZA, Latip J, Pethick F, Hunter IS, Edrada-Ebel R, Herron PR (2015) In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J Microbiol 53(12):847–855. https://doi.org/10.1007/s12275-015-5076-6

    Article  CAS  PubMed  Google Scholar 

  6. Kim H, Kim HR, Kim NR, Jeong BJ, Lee JS, Jang S, Chung DK (2015) Oral administration of Lactobacillus plantarum lysates attenuates the development of atopic dermatitis lesions in mouse models. J Microbiol 53(1):47–52. https://doi.org/10.1007/s12275-015-4483-z

    Article  CAS  PubMed  Google Scholar 

  7. Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55(1):31–49. https://doi.org/10.1002/1097-0282(2000)55:1%3c31::AID-BIP40%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  8. Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9(1):18–22. https://doi.org/10.1097/00062752-200201000-00004

    Article  PubMed  Google Scholar 

  9. Wang J, Chou S, Xu L, Zhu X, Dong N, Shan A, Chen Z (2015) High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Sci Rep 5:15963. https://doi.org/10.1038/srep15963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol 2(6):404–408. https://doi.org/10.4236/abb.2011.26059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rawlings ND, Barrett AJ (1994) Families of serine peptidases. Methods Enzymol 244:19–61. https://doi.org/10.1016/0076-6879(94)44004-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Song J, Yang Z, He S, Yang Y, Feng X, Dou X, Shan A (2019) Antimicrobial peptides with high proteolytic resistance for combating Gram-negative bacteria. J Med Chem 62(5):2286–2304. https://doi.org/10.1021/acs.jmedchem.8b01348

    Article  CAS  PubMed  Google Scholar 

  13. Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204(2):433–451. https://doi.org/10.1111/j.1432-1033.1992.tb16654.x

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, Trinh Hong T, Pham TT, Le Nguyen D (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39(19):5722–5730. https://doi.org/10.1021/bi9929756

    Article  CAS  PubMed  Google Scholar 

  15. Debowski D, Lukajtis R, Legowska A, Karna N, Pikula M, Wysocka M, Maliszewska I, Sienczyk M, Lesner A, Rolka K (2012) Inhibitory and antimicrobial activities of OGTI and HV-BBI peptides, fragments and analogs derived from amphibian skin. Peptides 35(2):276–284. https://doi.org/10.1016/j.peptides.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Zhang C, Xu X, Wang J, Yu H, Lai R, Gong W (2007) Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J 21(10):2466–2473. https://doi.org/10.1096/fj.06-7966com

    Article  CAS  PubMed  Google Scholar 

  17. Cai S, Qiao X, Feng L, Shi N, Wang H, Yang H, Guo Z, Wang M, Chen Y, Wang Y, Yu H (2018) Python cathelicidin CATHPb1 protects against multidrug-resistant staphylococcal infections by antimicrobial-immunomodulatory duality. J Med Chem 61(5):2075–2086. https://doi.org/10.1021/acs.jmedchem.8b00036

    Article  CAS  PubMed  Google Scholar 

  18. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  19. Zgoda JR, Porter JR (2001) A convenient microdilution method for screening natural products against bacteria and fungi. Pharm Biol 39(3):221–225. https://doi.org/10.1076/phbi.39.3.221.5934

    Article  CAS  Google Scholar 

  20. Amit C, Muralikumar S, Janaki S, Lakshmipathy M, Therese KL, Umashankar V, Padmanabhan P, Narayanan J (2019) Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system. Int J Nanomedicine 14:605–622. https://doi.org/10.2147/IJN.S184911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinto SN, Dias SA, Cruz AF, Mil-Homens D, Fernandes F, Valle J, Andreu D, Prieto M, Castanho M, Coutinho A, Veiga AS (2019) The mechanism of action of pepR, a viral-derived peptide, against Staphylococcus aureus biofilms. J Antimicrob Chemother 74(9):2617–2625. https://doi.org/10.1093/jac/dkz223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khara JS, Lim FK, Wang Y, Ke XY, Voo ZX, Yang YY, Lakshminarayanan R, Ee PLR (2015) Designing alpha-helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis: discerning the role of hydrophobicity and helicity. Acta Biomater 28:99–108. https://doi.org/10.1016/j.actbio.2015.09.015

    Article  CAS  PubMed  Google Scholar 

  23. Ma L, Xie X, Liu H, Huang Y, Wu H, Jiang M, Xu P, Ye X, Zhou C (2020) Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 10(3):1373–1390. https://doi.org/10.7150/thno.39157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim H, Jang JH, Kim SC, Cho JH (2014) De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother 69(1):121–132. https://doi.org/10.1093/jac/dkt322

    Article  CAS  PubMed  Google Scholar 

  25. Ji S, Li W, Zhang L, Zhang Y, Cao B (2014) Cecropin A-melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro. Biochem Biophys Res Commun 451(4):650–655. https://doi.org/10.1016/j.bbrc.2014.08.044

    Article  CAS  PubMed  Google Scholar 

  26. Chen HL, Su PY, Chang YS, Wu SY, Liao YD, Yu HM, Lauderdale TL, Chang K, Shih C (2013) Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD). PLoS Pathog 9(6):e1003425. https://doi.org/10.1371/journal.ppat.1003425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Q, Xu Y, Wang Q, Hang B, Sun Y, Wei X, Hu J (2015) Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model. Antimicrob Agents Chemother 59(5):2835–2841. https://doi.org/10.1128/AAC.04932-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han HM, Gopal R, Park Y (2016) Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids 48(2):505–522. https://doi.org/10.1007/s00726-015-2104-0

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi D, Shukla SK, Prakash O, Zhang G (2010) Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92(9):1236–1241. https://doi.org/10.1016/j.biochi.2010.02.023

    Article  CAS  PubMed  Google Scholar 

  30. Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB Jr, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68(5):2748–2755. https://doi.org/10.1128/iai.68.5.2748-2755.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chou S, Shao C, Wang J, Shan A, Xu L, Dong N, Li Z (2016) Short, multiple-stranded beta-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomater 30:78–93. https://doi.org/10.1016/j.actbio.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  32. Clifton LA, Skoda MW, Le Brun AP, Ciesielski F, Kuzmenko I, Holt SA, Lakey JH (2015) Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 31(1):404–412. https://doi.org/10.1021/la504407v

    Article  CAS  PubMed  Google Scholar 

  33. Travkova OG, Moehwald H, Brezesinski G (2017) The interaction of antimicrobial peptides with membranes. Adv Colloid Interface Sci 247:521–532. https://doi.org/10.1016/j.cis.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  34. Singh S, Nimmagadda A, Su M, Wang M, Teng P, Cai J (2018) Lipidated alpha/alpha-AA heterogeneous peptides as antimicrobial agents. Eur J Med Chem 155:398–405. https://doi.org/10.1016/j.ejmech.2018.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Cherryholmes G, Chang F, Rose DM, Schraufstatter I, Shively JE (2009) Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur J Immunol 39(11):3181–3194. https://doi.org/10.1002/eji.200939496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Key Research and Development Program of China (2018YFA0902000), the National Natural Science Foundation of China (No. 81803591), the National Science and Technology Major Project Foundation of China (2019ZX09721001-004–005), the fellowship of China Postdoctoral Science Foundation (2020T130723), the Natural Science Foundation of Jiangsu Province of China (No. BK20180563; No. BK20201327), and the Basic Scientific Research Business Expense Project of China Pharmaceutical University (No. 2632021ZD07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingman Ma or ChangLin Zhou.

Ethics declarations

Ethical Approval

All experimental procedures were approved by the animal care and management committee of China Pharmaceutical University (2020–03-001).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, P., Huang, Y. et al. PCL-1, a Trypsin-Resistant Peptide, Exerts Potent Activity Against Drug-Resistant Bacteria. Probiotics & Antimicro. Prot. 13, 1467–1480 (2021). https://doi.org/10.1007/s12602-021-09801-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09801-8

Keywords

Navigation