Skip to main content

Advertisement

Log in

High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic organisms finely tune their photosynthetic machinery including pigment compositions and antenna systems to adapt to various light environments. However, it is poorly understood how the photosynthetic machinery in the green flagellate Euglena gracilis is modified under high-light conditions. In this study, we examined high-light modification of excitation-energy-relaxation processes in Euglena cells. Oxygen-evolving activity in the cells incubated at 300 µmol photons m−2 s−1 (HL cells) cannot be detected, reflecting severe photodamage to photosystem II (PSII) in vivo. Pigment compositions in the HL cells showed relative increases in 9′-cis-neoxanthin, diadinoxanthin, and chlorophyll b compared with the cells incubated at 30 µmol photons m−2 s−1 (LL cells). Absolute fluorescence spectra at 77 K exhibit smaller intensities of the PSII and photosystem I (PSI) fluorescence in the HL cells than in the LL cells. Absolute fluorescence decay-associated spectra at 77 K of the HL cells indicate suppression of excitation-energy transfer from light-harvesting complexes (LHCs) to both PSI and PSII with the time constant of 40 ps. Rapid energy quenching in LHCs and PSII in the HL cells is distinctly observed by averaged Chl-fluorescence lifetimes. These findings suggest that Euglena modifies excitation-energy-relaxation processes in addition to pigment compositions to deal with excess energy. These results provide insights into the photoprotection strategies of this alga under high-light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFDA:

Absolute fluorescence decay-associated

Car:

Carotenoid

Chl:

Chlorophyll

HL:

High light

LHC:

Light-harvesting complex

LL:

Low light

PPFD:

Photosynthetic photon flux density

PS:

Photosystem

TRF:

Time-resolved fluorescence

References

  • Ahn TK, Avenson TJ, Ballottari M, Cheng Y-C, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    Article  CAS  PubMed  Google Scholar 

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta Bioenerg 1817:1483–1489

    Article  CAS  Google Scholar 

  • Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in Photosystem II. Photosynth Res 84:173–180

    Article  CAS  PubMed  Google Scholar 

  • Biggins J, Bruce D (1989) Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res 20:1–34

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta Bioenerg 1507:100–114

    Article  CAS  Google Scholar 

  • Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell DA, Serôdio J (2020) Photoinhibition of photosystem II in phytoplankton: processes and patterns. In: Larkum AWD, Grossman AR, Raven JA (eds) Photosynthesis in algae: biochemical and physiological mechanisms. Advances in photosynthesis and respiration including bioenergy and related processes, vol 45. Springer, Cham, pp 329–365

    Chapter  Google Scholar 

  • Casazza AP, Szczepaniak M, Müller MG, Zucchelli G, Holzwarth AR (2010) Energy transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II. Biochim Biophys Acta Bioenerg 1797:1606–1616

    Article  CAS  Google Scholar 

  • Casper-Lindley C, Björkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth Res 56:277–289

    Article  CAS  Google Scholar 

  • Chen JP, Tai CY, Chen BH (2004) Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.). J Chromatogr A 1054:261–268

    Article  CAS  PubMed  Google Scholar 

  • Connelly JP, Müller MG, Hucke M, Gatzen G, Mullineaux CW, Ruban AV, Horton P, Holzwarth AR (1997) Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants. J Phys Chem B 101:1902–1909

    Article  CAS  Google Scholar 

  • Connolly JS, Janzen AF, Samuel EB (1982) Fluorescence lifetimes of chlorophyll a: solvent, concentration and oxygen dependence. Photochem Photobiol 36:559–563

    Article  CAS  Google Scholar 

  • Cramer M, Myers J (1952) Growth and photosynthetic characteristics of Euglena gracilis. Arch Mikrobiol 17:384–402

    Article  CAS  Google Scholar 

  • Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce R, Zucchelli G, Garlaschi FM, Jennings RC (1998) A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core. Biochemistry 37:17355–17360

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Schiff JA (1986) Chlorophyll-protein complexes from Euglena gracilis and mutants deficient in chlorophyll b: I. Pigment composition. Plant Physiol 80:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580

    Article  CAS  PubMed  Google Scholar 

  • Doege M, Ohmann E, Tschiersch H (2000) Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynth Res 63:159–170

    Article  CAS  PubMed  Google Scholar 

  • Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  CAS  Google Scholar 

  • Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta Bioenerg 1507:80–99

    Article  CAS  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Groot M-L, Peterman EJG, van Stokkum IHM, Dekker JP, van Grondelle R (1995) Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophys J 68:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada F, Murakami A, Akimoto S (2017) Adaptation of divinyl chlorophyll a/b-containing cyanobacterium to different light conditions: three strains of Prochlorococcus marinus. J Phys Chem B 121:9081–9090

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  CAS  PubMed  Google Scholar 

  • Houlné G, Schantz R (1988) Characterization of cDNA sequences for LHCI apoproteins in Euglena gracilis: the mRNA encodes a large precursor containing several consecutive divergent polypeptides. Mol Gen Genet 213:479–486

    Article  PubMed  Google Scholar 

  • Ihalainen JA, van Stokkum IHM, Gibasiewicz K, Germano M, van Grondelle R, Dekker JP (2005) Kinetics of excitation trapping in intact Photosystem I of Chlamydomonas reinhardtii and Arabidopsis thaliana. Biochim Biophys Acta Bioenerg 1706:267–275

    Article  CAS  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta Bioenerg 1817:182–193

    Article  CAS  Google Scholar 

  • Kato S, Soshino M, Takaichi S, Ishikawa T, Nagata N, Asahina M, Shinomura T (2017) Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis. BMC Plant Biol 17:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato Y, Yokono M, Akimoto S, Takabayashi A, Tanaka A, Tanaka R (2017) Deficiency of the stroma-lamellar protein LIL8/PSB33 affects energy transfer around PSI in Arabidopsis. Plant Cell Physiol 58:2026–2039

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96:8784–8789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y-Z, Holt NE, Li X-P, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazor Y, Borovikova A, Caspy I, Nelson N (2017) Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat Plants 3:17014

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta Bioenerg 1767:327–334

    Article  CAS  Google Scholar 

  • Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86:62–69

    Article  CAS  PubMed  Google Scholar 

  • Muchhal US, Schwartzbach SD (1992) Characterization of a Euglena gene encoding a polyprotein precursor to the light-harvesting chlorophyll a/b-binding protein of photosystem II. Plant Mol Biol 18:287–299

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P, Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study. Biochim Biophys Acta Bioenerg 1141:23–28

    Article  CAS  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta Bioenerg 1817:1127–1133

    Article  CAS  Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, Takahashi T, Kashino Y, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta Bioenerg 1767:1353–1362

    Article  CAS  Google Scholar 

  • Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013a) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117:281–288

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Akimoto S, Tomo T (2013b) High excitation energy quenching in fucoxanthin chlorophyll a/c-binding protein complexes from the diatom Chaetoceros gracilis. J Phys Chem B 117:6888–6895

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M (2016) Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. Photosynth Res 130:83–91

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Ueno Y, Yokono M, Shen J-R, Akimoto S (2018) Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta Bioenerg 1859:524–530

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Ueno Y, Yokono M, Shen J-R, Akimoto S (2019a) Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Photosynth Res 141:355–365

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Ueno Y, Shen J-R, Akimoto S (2019b) Low-energy chlorophylls in fucoxanthin chlorophyll a/c-binding protein conduct excitation energy transfer to photosystem I in diatoms. J Phys Chem B 123:66–70

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Ueno Y, Shen J-R, Akimoto S (2020) Excitation-energy transfer and quenching in diatom PSI-FCPI upon P700 cation formation. J Phys Chem B 124:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330

    Article  CAS  PubMed  Google Scholar 

  • Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonova K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field MC, Hampl V (2020) Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol 225:1578–1592

    Article  PubMed  CAS  Google Scholar 

  • O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, London

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta Bioenerg 975:384–394

    Article  CAS  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen J-R (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science (New York, NY) 348:989–995

    Article  CAS  Google Scholar 

  • Qin X, Pi X, Wang W, Han G, Zhu L, Liu M, Cheng L, Shen J-R, Kuang T, Sui S-F (2019) Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat Plants 5:263–272

    Article  PubMed  Google Scholar 

  • Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P, Dekker JP (1997) Characterisation of LHC II in the aggregated state by linear and circular dichroism spectroscopy. Biochim Biophys Acta Bioenerg 1321:61–70

    Article  CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta Bioenerg 1817:167–181

    Article  CAS  Google Scholar 

  • Shibata Y, Nishi S, Kawakami K, Shen J-R, Renger T (2013) Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. J Am Chem Soc 135:6903–6914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavov C, Ballottari M, Morosinotto T, Bassi R, Holzwarth AR (2008) Trap-limited charge separation kinetics in higher plant photosystem I complexes. Biophys J 94:3601–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Ma J, Pan X, Zhao X, Chang W, Liu Z, Zhang X, Li M (2019) Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex. Nat Plants 5:273–281

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Ozawa S-I, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y (2019) Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat Plants 5:626–636

    Article  PubMed  Google Scholar 

  • Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648

    Article  CAS  PubMed  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of Photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    Article  CAS  Google Scholar 

  • Ueno Y, Shimakawa G, Miyake C, Akimoto S (2018) Light-harvesting strategy during CO2-dependent photosynthesis in the green alga Chlamydomonas reinhardtii. J Phys Chem Lett 9:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2019) Adaptation of light-harvesting functions of unicellular green algae to different light qualities. Photosynth Res 139:145–154

    Article  CAS  PubMed  Google Scholar 

  • Ünlü C, Polukhina I, van Amerongen H (2016) Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2. Eur Biophys J 45:209–217

    Article  PubMed  CAS  Google Scholar 

  • van der Weij-de Wit CD, Ihalainen JA, van Grondelle R, Dekker JP (2007) Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy. Photosynth Res 93:173–182

    Article  PubMed  CAS  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta Bioenerg 1187:1–65

    Article  CAS  Google Scholar 

  • Wlodarczyk LM, Dinc E, Croce R, Dekker JP (2016) Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions. Biochim Biophys Acta Bioenerg 1857:625–633

    Article  CAS  Google Scholar 

  • Yokono M, Akimoto S, Koyama K, Tsuchiya T, Mimuro M (2008a) Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta Bioenerg 1777:55–65

    Article  CAS  Google Scholar 

  • Yokono M, Akimoto S, Tanaka A (2008b) Seasonal changes of excitation energy transfer and thylakoid stacking in the evergreen tree Taxus cuspidata: how does it divert excess energy from photosynthetic reaction center? Biochim Biophys Acta Bioenerg 1777:379–387

    Article  CAS  Google Scholar 

  • Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta Bioenerg 1807:847–853

    Article  CAS  Google Scholar 

  • Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta Bioenerg 1817:754–759

    Article  CAS  Google Scholar 

  • Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A (2019) The PSI–PSII megacomplex in green plants. Plant Cell Physiol 60:1098–1108

    Article  CAS  PubMed  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI No. JP19H04726, JP20K06528, JP20H02914 (to R. N.), JP17H06434 (to J.-R. S.), and JP16H06553 (to S. A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryo Nagao or Seiji Akimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, R., Yokono, M., Kato, KH. et al. High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. Photosynth Res 149, 303–311 (2021). https://doi.org/10.1007/s11120-021-00849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00849-9

Keywords

Navigation