Skip to main content
Log in

A new proximal-like algorithm for solving split variational inclusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Using iterative regularizations, we introduce a new proximal-like algorithm for solving split variational inclusion problems in Hilbert space and establish a strong convergence theorem for it. As applications, we also investigate the split feasibility and split optimization problems. Several numerical experiments are presented in support of our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alber, Y., Butnariu, D., Kassay, G.: Convergence and Stability of a Regularization Method for Maximal Monotone Inclusions and Its Applications to Convex Optimization. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications. Nonconvex Optimization and Its Applications. https://doi.org/10.1007/0-387-24276-7-9, p 79. Springer, Boston (2005)

  2. Alber, Y., Butnariu, D., Ryazantseva, I.: Regularization methods for ill-posed inclusions and variational inequalities with domain perturbations. J Nonlinear Convex Anal. 2, 53–79 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Alber, Y., Ryazantseva, I.: Nonlinear Ill-posed Problems of Monotone Type. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  4. Brézis, H.: Operateurs Maximaux Monotones. North-Holland. Math. Stud. 5, 1–183 (1973)

    Article  Google Scholar 

  5. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  6. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problems. Inverse Prob. 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  7. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Bortfeld, T., Martin, B., Trofmov, A.: A unifed approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  9. Censor, Y., Elfving, T.: A multiprojection algorithms using Bragman projection in a product space. Numer Algorithm. 8, 221–239 (1994)

    Article  Google Scholar 

  10. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithm. 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Gibali, A., Reich, S.: A von Neumann alternating method for finding common solutions to variational inequalities. Nonlinear Anal. 75, 4596–4603 (2012)

    Article  MathSciNet  Google Scholar 

  13. Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities. Set Valued Var Anal. 20, 229–247 (2012)

    Article  MathSciNet  Google Scholar 

  14. Censor, Y., Segal, A.: Iterative projection methods in biomedical inverse problems. In: Censor, Y., Jiang, M., Louis, A. K. (eds.) Mathematical methods in biomedical imaging and intensity-modulated therapy, IMRT, pp 65–96. Edizioni della Norale, Pisa (2008)

  15. Chuang, C.-S.: Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem. Optimization 65, 859–876 (2016)

    Article  MathSciNet  Google Scholar 

  16. Chuang, C. -S.: Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl. 2013, 350 (2013)

    Article  MathSciNet  Google Scholar 

  17. Combettes, P. L.: The convex feasibility problem in image recovery. Adv Imaging Electron Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  18. Cottle, R. W., Yao, J. C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  Google Scholar 

  19. Hieu, D. V.: Projection methods for solving split equilibrium problems. J. Ind. Manag. Optim. 16, 2331–2349 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Hieu, D. V.: Two hybrid algorithms for solving split equilibrium problems. Inter. J. Comput. Math. 95, 561–583 (2018)

    Article  MathSciNet  Google Scholar 

  21. Hieu, D. V.: Parallel extragradient-proximal methods for split equilibrium problems. Math. Model. Anal. 21, 478–501 (2016)

    Article  MathSciNet  Google Scholar 

  22. Hieu, D. V., Cho, Y. J., Xiao, Y -B, Kumam, P.: Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces. Vietnam J. Math. https://doi.org/10.1007/s10013-020-00447-7 (2020)

  23. Hurt, N. E.: Phase Retrieval and Zero Crossings: Mathematical Methods in Image Reconstruction. Kluwer Academic, Dordrecht (1989)

  24. Long, L. V., Thong, D. V., Dung, V. T.: New algorithms for the split variational inclusion problems and application to split feasibility problems. Optimization 68, 2339–2367 (2019)

    Article  MathSciNet  Google Scholar 

  25. Moudafi, A.: A Regularized Hybrid Steepest Descent Method for Variational Inclusions. Numer. Funct. Anal. Optim. 33(1), 39–47 (2012)

    Article  MathSciNet  Google Scholar 

  26. Moudafi, A.: Split monotone variational inclusions. J Optim Theory Appl. 150, 275–283 (2011)

    Article  MathSciNet  Google Scholar 

  27. Stark, H.: Image Recovery: Theory and Applications. Academic Press, Orlando (1987)

  28. Sitthithakerngkiet, K., Deepho, J., Kumam, P.: A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems. Appl. Math. Comput. 250, 986–1001 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Xu, H.: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of the first author is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2020.06. The second author was partially supported by the Israel Science Foundation (Grant no. 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hieu, D., Reich, S., Anh, P.K. et al. A new proximal-like algorithm for solving split variational inclusion problems. Numer Algor 89, 811–837 (2022). https://doi.org/10.1007/s11075-021-01135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01135-4

Keywords

Mathematics Subject Classification (2010)

Navigation