Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The childhood migraine syndrome

Abstract

Migraine is a complex genetic brain disorder with an intricate pathogenesis and polymorphous clinical presentations, particularly in children. In this Perspective, we describe the different phenotypes of migraine in children, including conditions that have been referred to in the International Classification of Headache Disorders as “syndromes that may be related to migraine’’. Evidence is presented for the integration of abdominal migraine, cyclical vomiting syndrome, benign paroxysmal vertigo, benign paroxysmal torticollis and infantile colic into the unified diagnosis of ‘childhood migraine syndrome’ on the basis of clinical and epidemiological characteristics, and shared inheritance. In our opinion, such integration will guide clinicians from specialities other than neurology to consider migraine in the assessment of children with these disorders, as well as stimulate research into the genetics, pathophysiology and clinical features of all disorders within the syndrome. A diagnosis of childhood migraine syndrome would also enable patients to benefit from inclusion in clinical trials of old and new migraine treatments, thus potentially increasing the number of treatment options available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of headache and migraine in schoolchildren.

Similar content being viewed by others

References

  1. Isler, H. & Koehler, P. J. in The Headaches (eds Olesen, J., Goadsby, P. J., Ramadan, N., Tfelt-Hansen, P. & Welch, K. M.) 1–7 (Lippincott Williams & Wilkins, 2006).

  2. Williams, A. N. in Childhood Headache (ed. Abu-Arafeh, I.). 4–14 (Mac Keith Press, 2013).

  3. Headache Classification Committee of the International Headache Society (HIS). The international classification of headache disorders, 3rd edition. Cephalalgia 38, 1–211 (2018).

    Google Scholar 

  4. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia. 8 (Suppl. 7), 9–96 (1988).

    Google Scholar 

  5. Headache Classification Committee of the International Headache Society. The international classification of headache disorders, 2nd edition. Cephalalgia. 24, 8–160 (2004).

    Google Scholar 

  6. Özge, A. et al. Experts’ opinion about the primary headache diagnostic criteria of the ICHD-3rd edition beta in children and adolescents. J. Headache Pain 18, 109 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Özge, A. et al. Experts’ opinion about the secondary headache diagnostic criteria of the ICHD-3rd edition beta in children and adolescents. J. Headache Pain 18, 113 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Tarantino, S. et al. Migraine equivalents as part of migraine syndrome in childhood. Pediatr. Neurol. 51, 645–649 (2014).

    PubMed  Google Scholar 

  9. Farlex. Syndrome. The free dictionary. https://medical-dictionary.thefreedictionary.com/syndrome (2012).

  10. Blumenthal, H. J. & Rapoport, A. M. The clinical spectrum of migraine. Med. Clin. North Am. 85, 897–909 (2001).

    CAS  PubMed  Google Scholar 

  11. Giffin, N. J., Benton, S. & Goadsby, P. J. Benign paroxysmal torticollis in infancy: four new cases and linkage to CACNA1A mutation. Dev. Med. Child. Neurol. 44, 490–493 (2002).

    CAS  PubMed  Google Scholar 

  12. Abu-Arafeh, I., Razak, S., Sivaraman, B. & Graham, C. The prevalence of headache and migraine in children and adolescents: a systematic review of population-based studies. Dev. Med. Child. Neurol. 52, 1088–1097 (2010).

    PubMed  Google Scholar 

  13. Wöber-Bingöl, C. Epidemiology of migraine and headache in children and adolescents. Curr. Pain Headache Rep. 17, 341 (2013).

    PubMed  Google Scholar 

  14. Russell, M. B. & Olesen, J. Increased familial risk and evidence of genetic factor in migraine. BMJ 311, 541–544 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Russell, M. B., Iselius, L. & Olesen, J. Migraine without aura and migraine with aura are inherited disorders. Cephalalgia 16, 305–309 (1996).

    CAS  PubMed  Google Scholar 

  16. Neut, D., Fily, A., Cuvellier, J.-C. & Vallee, L. The prevalence of trigger factors in paediatric migraine: a questionnaire study in 102 children and adolescents. J. Headache Pain 13, 61–65 (2012).

    PubMed  Google Scholar 

  17. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).

    CAS  PubMed  Google Scholar 

  18. Costa, C. et al. A novel ATP1A2 gene mutation in familial hemiplegic migraine and epilepsy. Cephalalgia. 34, 68–72 (2014).

    PubMed  Google Scholar 

  19. Coppola, G., Pastorino, G. M. G., Vetri, L., D’Onofrio, F. & Operto, F. F. Familial hemiplegic migraine with ATP1A4 mutation: clinical spectrum and carbamazepine efficacy. Brain Sci. 18, 372 (2020).

    Google Scholar 

  20. Castro, M. J. et al. First mutation in the voltage-gated Nav1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia. 29, 308–313 (2009).

    PubMed  Google Scholar 

  21. Stendel, C. et al. Association of a novel splice site mutation in P/Q-type calcium channels with childhood epilepsy and late-onset slowly progressive non-episodic cerebellar ataxia. Int. J. Mol. Sci. 21, 3810 (2020).

    CAS  PubMed Central  Google Scholar 

  22. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet. 15, 62–69 (1997).

    CAS  PubMed  Google Scholar 

  23. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cuenca-Leon, E. et al. Genetic analysis of 27 Spanish patients with hemiplegic migraine, basilar-type migraine and childhood periodic syndrome. Cephalalgia 28, 1039–1047 (2008).

    CAS  PubMed  Google Scholar 

  25. Burstein, R., Noseda, R. & Borsook, D. Migraine: multiple processes, complex pathophysiology. J. Neurosci. 35, 6619–6629 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Goadsby, P. J. et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97, 553–622 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Buzzi, M. G. & Moskowitz, M. A. The pathogenesis of migraine: year 2005. J. Headache Pain 6, 105–111 (2005).

    PubMed  PubMed Central  Google Scholar 

  28. Messina, R., Filippi, M. & Goadsby, P. J. Recent advances in headache neuroimaging. Curr. Opin. Neurol. 31, 379–385 (2018).

    PubMed  Google Scholar 

  29. Ferrari, M. D., Roon, K. I., Lipton, R. B. & Goadsby, P. J. Oral triptans (serotonin 5-HT1B/1D agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet 358, 1668–1675 (2001).

    CAS  PubMed  Google Scholar 

  30. Olesen, J. et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N. Engl. J. Med. 11, 1104–1110 (2004).

    Google Scholar 

  31. Schlute, L. H. & May, A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 139, 1987–1993 (2016).

    Google Scholar 

  32. Barbanti, P. et al. Dopaminergic symptoms in migraine: a cross-sectional study on 1148 consecutive headache center-based patients. Cephalalgia 40, 1168–1176 (2020).

    PubMed  Google Scholar 

  33. Tfelt-Hansen, P. C. History of migraine aura and cortical spreading depression from 1941 and onwards. Cephalalgia 30, 780–792 (2010).

    CAS  PubMed  Google Scholar 

  34. Puledda, F., Ffytche, D., O’Daly, O. & Goadsby, P. J. Imaging the visual network in the migraine spectrum. Front. Neurol. 10, 1325 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Burke, M. J. et al. Mapping migraine to a common brain network. Brain 143, 541–553 (2020).

    PubMed  PubMed Central  Google Scholar 

  36. Wei, H. L. et al. Impaired effective functional connectivity of the sensorimotor network in interictal episodic migraineurs without aura. J. Headache Pain 21, 111 (2020).

    PubMed  PubMed Central  Google Scholar 

  37. Bolay, H. Thalamocortical network interruption: a fresh view for migraine symptoms. Turk. J. Med. Sci. 50, 1651–1654 (2020).

    PubMed  Google Scholar 

  38. Fliatova, E., Latysheva, N. & Kurenkov, A. Evidence of persistent central sensitisation in chronic headache: a multi-method study. J. Headache Pain 9, 295–300 (2008).

    Google Scholar 

  39. Bigal, M. E. et al. Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology 70, 1525–1533 (2008).

    CAS  PubMed  Google Scholar 

  40. Lahat, E. et al. Visual evoked potentials: a diagnostic test for migraine in children. Dev. Med. Child. Neurol. 39, 85–87 (1997).

    CAS  PubMed  Google Scholar 

  41. Mortimer, M. J. & Good, P. A. The VER as a diagnostic marker for childhood abdominal migraine. Headache 30, 642–645 (1990).

    CAS  PubMed  Google Scholar 

  42. Richer, L. et al. Drugs for the acute treatment of migraine in children and adolescents. Cochrane Database Syst. Rev. 4, CD005220 (2016).

    PubMed  Google Scholar 

  43. Edvinsson, L., Haanes, K. A., Warfvinge, K. & Krause, D. N. CGRP as the target of new migraine therapies – successful translation from bench to clinic. Nat. Rev. Neurol. 14, 338–350 (2018).

    CAS  PubMed  Google Scholar 

  44. Deng, H. et al. Efficacy and safety of calcitonin-gene-related peptide binding monoclonal antibodies for the preventive treatment of episodic migraine – an updated systematic review and meta-analysis. BMC Neurol. 20, 57 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zarcone, D. & Corbetta, S. Shared mechanisms of migraine, epilepsy and affective disorders. Neurol. Sci. 38, 73–76 (2017).

    PubMed  Google Scholar 

  46. Breslau, N., Davis, G. C., Schultz, L. R. & Peterson, E. L. Joint 1994 Wolff award presentation. Migraine and major depression: a longitudinal study. Headache 34, 387–393 (1994).

    CAS  PubMed  Google Scholar 

  47. Breslau, N. et al. Headache and major depression: is the association specific to migraine? Neurology 54, 308–313 (2000).

    CAS  PubMed  Google Scholar 

  48. Aromaa, M., Rautava, P., Helenius, H. & Sillanpää, M. L. Factors of early life as predictors of headache in children at school entry. Headache 38, 23–30 (1998).

    CAS  PubMed  Google Scholar 

  49. Milde-Busch, A. et al. Association between stress and migraine and tension-type headache: results from a school-based study in adolescents from grammar schools in Germany. Cephalalgia 31, 774–785 (2011).

    PubMed  Google Scholar 

  50. Abu-Arafeh, I. & Russell, G. Prevalence of headache and migraine in schoolchildren. BMJ 309, 765–769 (1994).

    Google Scholar 

  51. Lipton, R. B. et al. Prevalence and burden of chronic migraine in adolescents: results of the chronic daily headache in adolescents study (C-dAS). Headache 51, 693–706 (2011).

    PubMed  Google Scholar 

  52. Ozge, A. et al. The prevalence of episodic and chronic migraine in children and adolescents. Eur. J. Neurol. 20, 95–101 (2013).

    CAS  PubMed  Google Scholar 

  53. Wober-Bingol, C. et al. Clinical features of migraine: a cross-sectional study in patients aged three to sixty-nine. Cephalalgia 24, 12–17 (2004).

    CAS  PubMed  Google Scholar 

  54. Ozge, A. et al. The sensitivity and specificity of the case definition criteria in diagnosis of headache: a school-based epidemiological study of 5562 children in Mersin. Cephalalgia 23, 138–145 (2003).

    CAS  PubMed  Google Scholar 

  55. Solotareff, L., Cuvellier, J.-C., Duhamel, A., Vallee, L. & Tich, S. N. T. Trigger factors in childhood migraine: a prospective clinic-based study from North of France. J. Child. Neurol. 32, 754–758 (2017).

    PubMed  Google Scholar 

  56. Kienbacher, C. et al. Clinical features, classification and prognosis of migraine and tension-type headache in children and adolescents: a long-term follow up study. Cephalalgia 26, 820–830 (2006).

    CAS  PubMed  Google Scholar 

  57. Abu-Arafeh, I. & Callaghan, M. Short migraine attacks less than 2 h duration in children and adolescents. Cephalalgia 24, 333–338 (2004).

    CAS  PubMed  Google Scholar 

  58. Powers, S. W. et al. The Childhood and Adolescent Migraine Prevention (CHAMP) study: a report on baseline characteristics of participants. Headache 56, 859–870 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Kober, J., Nyari, T., Benedek, G. & Turi, S. Age-related prevalence and features of migraine headache in Hungarian schoolchildren and adolescents. Eur. J. Paediatr. Neurol. 17, 600–607 (2013).

    Google Scholar 

  60. Ahmed, M., Boyd, C., Vavilikolanu, R. & Rafique, B. Visual symptoms and childhood migraine: qualitative analysis of duration, location, spread, mobility, colour and pattern. Cephalalgia 38, 2017–2025 (2018).

    PubMed  Google Scholar 

  61. Quarshie, V. in Childhood Headache (ed. Abu-Arafeh, I.) 308–317 (Mac Keith Press, 2013).

  62. Yamanaka, G. et al. Clinical features and burden scores in Japanese pediatric migraines with brainstem aura, hemiplegic migraine, and retinal migraine. J. Child. Neurol. 35, 667–673 (2020).

    PubMed  Google Scholar 

  63. Taga, A. et al. Pediatric migraine with aura in an Italian case series. Neurol. Sci. 38, 185–187 (2017).

    PubMed  Google Scholar 

  64. Smith, R. A., Wright, B. & Bennett, S. Hallucinations and illusions in migraine in children and the Alice in Wonderland syndrome. Arch. Dis. Child. 100, 296–298 (2015).

    CAS  PubMed  Google Scholar 

  65. Mastria, G. et al. Prevalence and characteristics of Alice in Wonderland Syndrome in adult migraineurs: perspectives from a tertiary referral headache unit. Cephalalgia 41, 515–524 (2020).

    PubMed  Google Scholar 

  66. Paemeleire, K. et al. Diagnosis, pathophysiology and management of chronic migraine: a proposal of the Belgian Headache Society. Acta Neurol. Belg. 115, 1–17 (2015).

    PubMed  Google Scholar 

  67. Filippi, M. & Messina, R. The chronic migraine brain: what have we learned from neuroimaging. Front. Neurol. 10, 1356 (2019).

    PubMed  Google Scholar 

  68. Chen, Z., Chen, X., Lui, M., Ma, L. & Yu, S. Volume of hypothalamus as a diagnostic biomarker of chronic migraine. Front. Neurol. 10, 606 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. Coppola, G. et al. Cerebral gray matter volume in patients with chronic migraine: correlations with clinical features. J. Headache Pain 18, 115 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Bilgic, B. et al. Volumatic differences suggest involvement of cerebellum and brainstem in chronic migraine. Cephalalgia 36, 301–308 (2016).

    PubMed  Google Scholar 

  71. Schwedt, T. J. et al. Atypical resting state functional connectivity of affective pain regions in chronic migraine. Headache 53, 737–751 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Welch, K. M., Nagesh, V., Aurora, S. K. & Gelman, N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41, 629–637 (2001).

    CAS  Google Scholar 

  73. Kruit, M. C., Launer, L. J., Overbosch, J., van Buchem, M. A. & Ferrari, M. D. Iron accumulation in deep brain nuclei in migraine: a population-based magnetic resonance imaging study. Cephalalgia 29, 351–359 (2009).

    CAS  PubMed  Google Scholar 

  74. Vivero, C. D. et al. Iron deposits in periaqueductal gray matter are associated with poor response to OnabotulinumtoxinA in chronic migraine. Toxins 12, 479 (2020).

    CAS  Google Scholar 

  75. Wessel, M. A., Cobb, J. C., Jackson, E. B., Harris, G. S. Jr. & Detwiler, A. C. Paroxysmal fussing in infancy, sometimes called colic. Pediatrics 14, 421–435 (1954).

    CAS  PubMed  Google Scholar 

  76. Ellwood, J., Draper-Rodi, J. & Carnes, D. Comparison of common interventions for the treatment of infantile colic: a systematic review of reviews and guideline. BMJ Open 10, e035405 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. Wolke, D., Bilgin, A. & Samara, M. Systematic review and meta-analysis: fussing and crying durations and prevalence of colic in infants. J. Pediatr. 185, 55–61 (2017).

    PubMed  Google Scholar 

  78. Sillanpaa, M. & Saarinen, M. Infantile colic associated with childhood migraine: a prospective cohort study. Cephalalgia 35, 1246–1251 (2015).

    PubMed  Google Scholar 

  79. Romanello, S. et al. Association between childhood migraine and history of infantile colic. JAMA 309, 1607–1612 (2013).

    CAS  PubMed  Google Scholar 

  80. Jan, M. M. S. & Al-Buhairi, A. R. Is infantile colic a migraine-related phenomenon? Clin. Pediatrics 40, 295–297 (2001).

    CAS  Google Scholar 

  81. Gelfand, A. A., Thomas, K. C. & Goadsby, P. J. Before the headache, infantile colic as an early life expression of migraine. Neurology 79, 1392–1396 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. Gelfand, A. A. et al. Association between parental migraine and infant colic: a cross sectional, web-based, US survey study. Headache 59, 988–1001 (2019).

    PubMed  Google Scholar 

  83. Al-Twaijri, W. A. & Shevell, M. I. Pediatric migraine equivalents: occurrence and clinical features in practice. Pediatr. Neurol. 26, 365–368 (2002).

    PubMed  Google Scholar 

  84. Hadjipanayis, A., Efstathiou, E. & Neubauer, D. Benign paroxysmal torticollis of infancy: an underdiagnosed condition. J. Paediatr. Child. Health 51, 674–678 (2015).

    PubMed  Google Scholar 

  85. Rosman, N. P., Douglas, L. M., Sharif, U. & Paolini, J. The neurology of benign paroxysmal torticollis of infancy: report of 10 new cases and review of the literature. J. Child. Neurol. 24, 155–160 (2009).

    PubMed  Google Scholar 

  86. Moavero, R. et al. Cyclic vomiting syndrome and benign paroxysmal torticollis are associated with a high risk of developing primary headache: a longitudinal study. Cephalalgia 39, 1236–1240 (2019).

    PubMed  Google Scholar 

  87. Danielsson, A. et al. Benign paroxysmal torticollis of infancy does not lead to neurological sequelae. Dev. Med. Child. Neurol. 60, 1251–1255 (2018).

    PubMed  Google Scholar 

  88. Brodsky, J., Kaur, K., Shoshany, T., Lipson, S. & Zhou, G. Benign paroxysmal migraine variants of infancy and childhood: transition and clinical features. Eur. J. Pediatr. Neurol. 22, 667–673 (2018).

    Google Scholar 

  89. Greene, K. A. et al. Benign paroxysmal torticollis: phenotype, natural history, and quality of life. Pediatr. Res. https://doi.org/10.1038/s41390-020-01309-1 (2021).

    Article  PubMed  Google Scholar 

  90. Shin, M., Douglas, L. M., Milunsky, J. M. & Rosman, P. The genetics of benign paroxysmal torticollis of infancy; is there an association with mutations in CACNA1A gene? J. Child. Neurol. 31, 1057–1061 (2016).

    PubMed  Google Scholar 

  91. Campbell, D. B., North, J. B. & Hess, E. J. Tottering mouse motor dysfunction is abolished on the Purkinji cell degeneration (PCD) mutant background. Exp. Neurol. 160, 268–278 (1999).

    CAS  PubMed  Google Scholar 

  92. Dale, R. C., Gardiner, A., Antony, J. & Houlden, H. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev. Med. Child. Neurol. 54, 958–960 (2012).

    PubMed  Google Scholar 

  93. Krams, B., Echenne, B., Leydet, J., Rivier, F. & Roubertie, A. Benign paroxysmal vertigo of childhood: long-term outcome. Cephalalgia 31, 439–443 (2011).

    PubMed  Google Scholar 

  94. Ralli, G., Atturo, F. & de Filippis, C. Idiopathic benign paroxysmal vertigo in children, a migraine precursor. Int. J. Pediatr. Otorhinolaryngol. 73, S16–S18 (2009).

    PubMed  Google Scholar 

  95. Batuecas-Caletro, A. et al. Is benign paroxysmal vertigo of childhood a migraine precursor? Eur. J. Pediatr. Neurol. 17, 397–400 (2013).

    Google Scholar 

  96. Lindskog, U., Odkvist, L., Noaksson, L. & Wallquist, J. Benign paroxysmal vertigo in childhood: a long-term follow up. Headache 39, 33–37 (1999).

    CAS  PubMed  Google Scholar 

  97. Abu-Arafeh, I. & Russell, G. Paroxysmal vertigo as a migraine equivalent in children: a population-based study. Cephalalgia 15, 22–25 (1995).

    CAS  PubMed  Google Scholar 

  98. Kovacic, K., Sood, M. & Venkatesan, T. Cyclic vomiting syndrome in children and adults: what is new in 2018? Curr. Gastroenterol. Rep. 20, 46 (2018).

    PubMed  Google Scholar 

  99. Abu-Arafeh, I. & Russell, G. Cyclical vomiting syndrome in children: a population-based study. J. Pediatr. Gastroenerol. Nutr. 21, 454–458 (1995).

    CAS  Google Scholar 

  100. Ertekin, V., Selimoglu, M. A. & Altnkaynak, S. Prevalence of cyclic vomiting syndrome in a sample of Turkish school children in an urban area. J. Clin. Gastroenterol. 40, 896–898 (2006).

    PubMed  Google Scholar 

  101. Sagar, R. C. et al. Cyclic vomiting syndrome is a prevalent and under-recognised condition in the gastroenterology outpatient clinic. Neurogastroenterol. Motil. 30, e13174 (2018).

    Google Scholar 

  102. Drumm, B. R. et al. Cyclical vomiting syndrome in children: a prospective study. Neurogastroenterol. Motil. 24, 922–927 (2012).

    CAS  PubMed  Google Scholar 

  103. Li, B. U. et al. North American Society for Pediatric Gastroenterology, Hepatology and Nutrition consensus statement on diagnosis and management of cyclic vomiting syndrome. J. Pediatr. Gastroenerol. Nutr. 47, 379–393 (2008).

    CAS  Google Scholar 

  104. Saps, M., Nichols-Vinueza, D., Rosen, J. M. & Velasco-Benitez, C. A. Prevalence of functional gastrointestinal disorders in Colombian school children. J. Pediatr. 164, 542–545 (2014).

    PubMed  Google Scholar 

  105. Abu-Arafeh, I. & Russell, G. Prevalence and clinical features of abdominal migraine compared with those of migraine headache. Arch. Dis. Child. 72, 413–417 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mortimer, M. J., Kay, J. & Jaron, A. Clinical epidemiology of childhood abdominal migraine in an urban general practice. Dev. Med. Child. Neurol. 35, 243–248 (1993).

    CAS  PubMed  Google Scholar 

  107. Dignan, F., Abu-Arafeh, I. & Russell, G. The prognosis of childhood abdominal migraine. Arch. Dis. Child. 84, 415–418 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. D’Onofrio, F. et al. Adult abdominal migraine: a new syndrome or sporadic feature of migraine headache? A case report. Eur. J. Neurol. 13, 85–88 (2006).

    PubMed  Google Scholar 

  109. Symon, D. N. & Russell, G. Abdominal migraine: a childhood syndrome defined. Cephalalgia 6, 223–228 (1986).

    CAS  PubMed  Google Scholar 

  110. Hejazi, R. A. et al. Autonomic nerve function in adult patients with cyclic vomiting syndrome. Neurogastroenterol. Motil. 23, 439–443 (2011).

    CAS  PubMed  Google Scholar 

  111. Kovacic, K. & Li, B. U. K. Cyclic vomiting syndrome: a narrative review and guide to management. Headache 61, 231–243 (2021).

    PubMed  Google Scholar 

  112. Chelimsky, T. C. & Chelimsky, G. G. Autonomic abnormalities in cyclic vomiting syndrome. J. Pediatr. Gastroenterol. Nutr 44, 326–330 (2007).

    PubMed  Google Scholar 

  113. Raucci, U. et al. Cyclic vomiting syndrome in children. Front. Neurol. 11, 583425 (2020).

    PubMed  PubMed Central  Google Scholar 

  114. Ye, Z., Xue, A., Huang, Y. & Wu, Q. Children with cyclic vomiting syndrome: phenotypes, disease burden and mitochondrial DNA analysis. BMC Gastroenterol. 18, 104 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Boles, R. G., Chun, N., Senadheera, D. & Wong, L. J. Cyclic vomiting syndrome and mitochondrial DNA mutations. Lancet 350, 1299–1300 (1997).

    CAS  PubMed  Google Scholar 

  116. Salpietro, C. D., Briuglia, S., Merlino, M. V., Di Bella, C. & Rigoli, L. A mitochondrial DNA mutation (A3243G mtDNA) in a family with cyclic vomiting. Eur J Pediatr 162, 727–728 (2003).

    PubMed  Google Scholar 

  117. Venkatesan, T. et al. Quantitative pedigree analysis and mitochondrial DNA sequence variants in adults with cyclic vomiting syndrome. BMC Gastroenterol. 14, 181 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Lee, J., Wong, S. A., Li, B. U. & Boles, R. G. NextGen nuclear DNA sequencing in cyclic vomiting syndrome reveals a significant association with the stress-induced calcium channel (RYR2). Neurogastroenterol. Motil. 27, 990–996 (2015).

    CAS  PubMed  Google Scholar 

  119. Domingo, D. et al. Non-ventricular, clinical, and functional features of the RyR2(R420Q) mutation causing catecholaminergic polymorphic ventricular tachycardia. Rev. Esp. Cardiol. 68, 398–407 (2015).

    PubMed  Google Scholar 

  120. O’Donnell, A. M., Nakamura, H. & Puri, P. Altered ryanodine receptor gene expression in Hirschsprung’s disease. Pediatr. Surg. Int. 35, 923–927 (2019).

    Google Scholar 

  121. Ellingsen, D. M. et al. Cyclic vomiting syndrome is characterised by altered functional brain imaging connectivity of the insular cortex: a cross comparison with migraine and healthy adults. Neurogastroenterol. Motil. 29, e13004 (2017).

    Google Scholar 

  122. Venkatesan, T. et al. Role of chronic cannabis use: cyclic vomiting syndrome vs cannabinoid hyperemesis syndrome. Neurogastroenterol. Motil. 31, e13606 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Wasilewski, A. et al. Cannabinoid receptor type 1 and mu-opioid receptor polymorphisms are associated with cyclic vomiting syndrome. Am. J. Gastroenterol. 112, 933–939 (2017).

    CAS  PubMed  Google Scholar 

  124. Fitzpatrick, E., Bourke, B., Drumm, B. & Rowland, M. Outcome of children with cyclical vomiting syndrome. Arch. Dis. Child. 92, 1001–1004 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Dignan, F., Symon, D. N. K., Abu-Arafeh, I. & Russel, L. G. The prognosis of cyclical vomiting syndrome. Arch. Dis. Child. 84, 55–57 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hikita, T. et al. Sumatriptan as a treatment of cyclic vomiting syndrome: a clinical trial. Cephalalgia 31, 504–507 (2010).

    PubMed  Google Scholar 

  127. Gelfand, A. A. Migraine and childhood periodic syndrome in children and adolescents. Curr. Opin. Neurol. 26, 262–268 (2013).

    PubMed  Google Scholar 

  128. Levinthal, D. J. The cyclic vomiting syndrome threshold: a framework for understanding pathogenesis and predicting successful treatments. Clin. Transl. Gastroenterol. 7, e198 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Hornby, P. J. Central neurocircuitry associated with emesis. Am. J. Med. 111, 106S–112S (2001).

    PubMed  Google Scholar 

  130. Mani, J. & Madani, S. Pediatric abdominal migraine: current perspectives on a lesser known entity. Pediatric Health Med. Ther. 9, 47–58 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cuvellier, J.-C. & Lepine, A. Childhood periodic syndrome. Pediatr. Neurol. 42, 1–11 (2010).

    PubMed  Google Scholar 

  132. Gelfand, A. A. Episodic syndromes that may be associated with migraine: A.K.A. “the childhood periodic syndromes”. Headache 55, 1358–1364 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Lagman-Bartolome, A. M. & Lay, C. Pediatric migraine variants: a review of epidemiology, diagnosis, treatment and outcome. Curr. Neurol. Neurosci. Rep. 15, 34 (2015).

    PubMed  Google Scholar 

  134. Gelfand, A. A. Episodic syndromes of childhood associated with migraine. Curr. Opin. Neurol. 31, 281–285 (2018).

    PubMed  Google Scholar 

  135. Sohon, E. The unique demand of childhood migraine. Nature 586, S19–S21 (2020).

    Google Scholar 

  136. Khurshid, M. S. & Abu-Arafeh, I. Randomised controlled trials of preventive treatment of migraine in children: quality of evidence as assessed against IHS guidelines [abstract IHC-PO-386]. Cephalalgia 39(IS), 252 (2019).

    Google Scholar 

  137. Powers, S. W. et al. Trial of amitriptyline, topiramate, and placebo for pediatric migraine. N. Engl. J. Med. 376, 115–124 (2017).

    CAS  PubMed  Google Scholar 

  138. Oskoui, M. et al. Practice guideline update summary: acute treatment of migraine in children and adolescents: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 93, 487–499 (2019).

    PubMed  Google Scholar 

  139. Oskoui, M. et al. Practice guideline update summary: pharmacologic treatment for pediatric migraine prevention: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Headache Society. Headache 59, 1144–1157 (2019).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.A.-A. carried out the literature review, wrote the first draft, and edited and approved subsequent drafts. A.A.G. contributed to the literature review, added to the first draft, and edited and approved subsequent drafts.

Corresponding author

Correspondence to Ishaq Abu-Arafeh.

Ethics declarations

Competing interests

I.A.-A. is the Chairman of the Child and Adolescent Standing Committee of the International Headache Society, is a Chief Investigator for two clinical trials sponsored by Eli-Lilly and a Principal Investigator for a clinical trial sponsored by Amgen. A.A.G. has received consulting fees from Biohaven, has received honoraria from JAMA Neurology and UpToDate, and receives grant support from Amgen and the Duke Clinical Research Institute. She receives a stipend from the American Headache Society for her role as Editor of Headache. The spouse of A.A.G. reports research support (to UCSF) from Genentech for a clinical trial, honoraria for editorial work from Dynamed Plus, and personal compensation for medical legal consulting.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the video in Supplementary Video 1.

Peer review information

Nature Reviews Neurology thanks V. Guidetti, F. Heinen, A. Verrotti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

In preparing this Perspective, literature searches of PubMed and Google Scholar were carried out to assess original research on components of the migraine syndrome. It was not the intention to perform a formal systematic review.

Supplementary information

Supplementary video 1

A child with a typical episode of benign paroxysmal torticollis.

Glossary

Biopsychosocial model

A model in which the interaction of biological, psychological and social factors influence the presentation of disease and response to treatment.

Cephalic cutaneous allodynia

An abnormal perception of normally innocuous sensory stimuli, such as combing of hair, as painful.

Macropsia

A visual hallucination in which objects looks larger than their real size.

Micropsia

A visual illusion in which objects looks smaller than their real size.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Arafeh, I., Gelfand, A.A. The childhood migraine syndrome. Nat Rev Neurol 17, 449–458 (2021). https://doi.org/10.1038/s41582-021-00497-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00497-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing