Skip to main content
Log in

Full-genome characterization of a novel Felis catus papillomavirus 4 subtype identified in a cutaneous squamous cell carcinoma of a domestic cat

  • Short Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The present study describes two full-genome sequences of Felis catus papillomavirus type 4 (FcaPV4) identified in squamous cell carcinoma (SCC) of two domestic cats. Two full-genome sequences of FcaPV4 were detected and characterized by PCR and sequencing. The L1 nucleotide sequence homology of one case showed 95.70% sequence identity to the reference FcaPV4, suggesting that this isolate should be classified as a subtype. Reverse-transcriptase PCR (RT-PCR) of two oncogenes, E6 and E7 was performed to confirm mRNA expression. Expression of E6 and E7 mRNA was detected in both cases, suggesting that FcaPV4 contributes to the development of SCC. This is the first report of FcaPV4 subtype. The present study will update the genomic features of FcaPV4 and contribute to deepening our knowledge about the etiological roles of FcaPV4 in feline cutaneous SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Miller W, Griffin C, Karen C (2012) Muller and Kirk’s small animal dermatology, 7th ed. Saunders, Philadelphia, USA

  2. Stebbins KE, Morse CC, Goldschmidt MH (1989) Feline oral neoplasia: a ten-year survey. Vet Pathol 128:121–128

    Article  Google Scholar 

  3. VanDoorslaer K, Chen Z, Bernard HU, Chan PKS, Desalle R, Dillner J, Forslund O, Haga T, McBride AA, Villa LL, Burk RD (2018) ICTV virus taxonomy profile: Papillomaviridae. J Gen Virol 99:989–990. https://doi.org/10.1099/jgv.0.001105

    Article  CAS  Google Scholar 

  4. Carrai M, Van Brussel K, Shi M, Li C-X, Chang W-S, Munday JS, Voss K, McLuckie A, Taylor D, Laws A, Holmes EC, Barrs VR, Beatty JA (2020) Identification of a novel papillomavirus associated with squamous cell carcinoma in a domestic cat. Viruses 12:124. https://doi.org/10.3390/v12010124

    Article  CAS  PubMed Central  Google Scholar 

  5. Gil da Costa RM, Peleteiro MC, Pires MA, DiMaio D (2017) An update on canine, feline and bovine papillomaviruses. Transbound Emerg Dis 64:1371–1379. https://doi.org/10.1111/tbed.12555

    Article  CAS  PubMed  Google Scholar 

  6. Munday JS, Gibson I, French F (2011) Papillomaviral DNA and increased p16 CDKN2A protein are frequently present within feline cutaneous squamous cell carcinomas in ultraviolet-protected skin. Vet Dermatol 22:360–366. https://doi.org/10.1111/j.1365-3164.2011.00958.x

    Article  PubMed  Google Scholar 

  7. Yamashita-Kawanishi N, Sawanobori R, Matsumiya K, Uema A, Chambers JK, Uchida K, Shimakura H, Tsuzuki M, Chang C-Y, Chang H-W, Haga T (2018) Detection of Felis catus papillomavirus type 3 and 4 DNA from squamous cell carcinoma cases of cats in Japan. J Vet Med Sci 8:1236–1240. https://doi.org/10.1292/jvms.18-0089

    Article  CAS  Google Scholar 

  8. Schiffman M, Rodriguez AC, Chen Z, Wacholder S, Herrero R, Hildesheim A, Desalle R, Befano B, Yu K, Safaeian M, Sherman ME, Morales J, Guillen D, Alfaro M, Hutchinson M, Solomon D, Castle PE, Burk RD (2010) A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-4179

    Article  PubMed  PubMed Central  Google Scholar 

  9. Godi A, Bissett SL, Masloh S, Fleury M, Li S, Zhao Q, Xia N, Cocuzza CE, Beddows S (2019) Impact of naturally occurring variation in the human papillomavirus 52 capsid proteins on recognition by type-specific neutralising antibodies. J Gen Virol 100:237–245. https://doi.org/10.1099/jgv.0.001213

    Article  CAS  PubMed  Google Scholar 

  10. Regnard GL, Baloyi NM, Bracher LR, Hitzeroth II, Rybicki EP (2016) Complete genome sequences of two isolates of Canis familiaris oral papillomavirus from South Africa. Genome Announc. https://doi.org/10.1128/genomeA.01006-16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen Z, van Doorslaer K, DeSalle R, Wood CE, Kaplan JR, Wagner JD, Burk RD (2009) Genomic diversity and interspecies host infection of α12 Macaca fascicularis papillomaviruses (MfPVs). Virology 393:304–310. https://doi.org/10.1016/j.virol.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  12. Arreaza G, Qiu P, Pang L, Albright A, Hong L, Marton M, Levitan D (2016) Pre-analytical considerations for successful next-generation sequencing (NGS): challenges and opportunities for formalin-fixed and paraffin-embedded tumor tissue (FFPE) samples. Int J Mol Sci 17:1579. https://doi.org/10.3390/ijms17091579

    Article  PubMed Central  Google Scholar 

  13. Yamashita-Kawanishi N, Tsuzuki M, Wei Z, Kok MK, Ishiyama D, Chambers JK, Uchida K, Dong J, Shimakura H, Haga T (2019) Identification of bovine papillomavirus type 1 and 2 from bovine anogenital fibropapillomas. J Vet Med Sci 81:1000–1005. https://doi.org/10.1292/jvms.19-0017

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453. https://doi.org/10.1016/0022-2836(70)90057-4

    Article  CAS  PubMed  Google Scholar 

  16. DeVilliers EM, Fauquet C, Broker TR, Bernard H (2004) Classification of papillomaviruses. Virology 324:17–27. https://doi.org/10.1016/j.virol.2004.03.033

    Article  CAS  Google Scholar 

  17. Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D, Liou D, Sun Q, Kaur R, Huyen Y, Mcbride AA (2017) The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res 45:499–506. https://doi.org/10.1093/nar/gkw879

    Article  CAS  Google Scholar 

  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  19. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mcbrides AA, Romanczuk H, Howley PM (1991) The papillomavirus E2 regulatory proteins. J Biol Chem 266:18411–18414

    Article  Google Scholar 

  21. Chang CY, Yamashita-Kawanishi N, Tomizawa S, Liu I-L, Chen W-T, Chang Y-C, Huang W-H, Tsai P-S, Shirota K, Chambers JK, Uchida K, Haga T, Chang H-W (2020) Whole genomic analysis and comparison of two canine papillomavirus type 9 strains in malignant and benign skin lesions. Viruses 12:736. https://doi.org/10.3390/v12070736

    Article  CAS  PubMed Central  Google Scholar 

  22. Munday JS, Aberdein D (2012) Loss of retinoblastoma protein, but not p53, is associated with the presence of papillomaviral DNA in feline viral plaques, bowenoid in situ carcinomas, and squamous cell carcinomas. Vet Pathol 49:538–545. https://doi.org/10.1177/0300985811419534

    Article  CAS  PubMed  Google Scholar 

  23. Altamura G, Corteggio A, Pacini L, Conte A, Maria G, Tommasino M, Accardi R, Borzacchiello G (2016) Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo. Virology 496:1–8. https://doi.org/10.1016/j.virol.2016.05.017

    Article  CAS  PubMed  Google Scholar 

  24. Thomson NA, Munday JS, Dittmer KE (2016) Frequent detection of transcriptionally active Felis catus papillomavirus 2 in feline cutaneous squamous cell carcinomas. J Gen Virol 97:1189–1197. https://doi.org/10.1099/jgv.0.000416

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TH and HWC conceived the study; NYK, YG, and CYC performed the experiments; NYK, YG, and CYC analyzed the data; JKC and KU provided the samples and contributed to histopathological analysis; NYK wrote the manuscript. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Takeshi Haga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors. Sample materials were derived from the Laboratory of Veterinary Pathology in the University of Tokyo, submitted for diagnostic purpose.

Informed consent

Informed consent is not required because no human participants were involved in this article.

Additional information

Edited by Juergen A Richt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11262_2021_1843_MOESM1_ESM.pdf

Supplementary file1 (PDF 549 kb) Supplementary Figure 1 FcaPV4 E6 and E7 mRNA expression by reverse-transcriptase PCR (RT-PCR). Gel electrophoresis results confirmed cDNA (mRNA) expression of FcaPV4 E6 (top) and E7 (bottom) by RT-PCR in isolates 13-136 and 14-1110. A single band around the expected size of 158 bp (E6) and 139 bp (E7) was confirmed by RT-PCR in both cases. Abbreviations: bp, base pair; DNased, DNase-treated.

11262_2021_1843_MOESM2_ESM.xlsx

Supplementary file2 (XLSX 13 kb) Supplementary Table 1 Primers used for PCR, reverse-transcriptase PCR, and sequencing in this study. The nucleotide location and the expected amplicon size refer to the reference FcaPV4 (GenBank accession number: KF147892). Abbreviation: bp, base pairs; F, forward; nt, nucleotide; R, reverse; RT-PCR, reverse-transcriptase PCR.

11262_2021_1843_MOESM3_ESM.xlsx

Supplementary file3 (XLSX 13 kb) Supplementary Table 2 Nucleotide and amino acid substitutions observed in isolates 13-136 and 14-1110. For ORF-coding regions, the nucleotide substitutions which result in missense mutations are indicated. Nucleotide substitutions observed in the LCR and intergenic region (3836-4120nt) are noted. The nucleotide and amino acid positions refer to the reference FcaPV4 (GenBank accession number: KF147892). Abbreviation: nt, nucleotide; ORF, open reading frame.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita-Kawanishi, N., Gushino, Y., Chang, CY. et al. Full-genome characterization of a novel Felis catus papillomavirus 4 subtype identified in a cutaneous squamous cell carcinoma of a domestic cat. Virus Genes 57, 380–384 (2021). https://doi.org/10.1007/s11262-021-01843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-021-01843-y

Keywords

Navigation