Skip to main content

Advertisement

Log in

Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No data were used from internet data sources.

References

  • Abaci, H.E., et al.: Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv. Healthcare Mater. 5(14), 1800–1807 (2016)

    Article  Google Scholar 

  • Abdellahi, M., et al.: Preparing diopside nanoparticle scaffolds via space holder method: Simulation of the compressive strength and porosity. J. Mech. Behav. Biomed. Mater. 72, 171–181 (2017)

    Article  Google Scholar 

  • Aghdam, H.A., et al.: Effect of calcium silicate nanoparticle on surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application. Powder Technol. 361, 917–929 (2020)

    Article  Google Scholar 

  • Arai, K., et al.: Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS One 13, 12 (2018)

    Article  Google Scholar 

  • Aravalli, R.N., Cressman, E.N., Steer, C.J.: Hepatic differentiation of porcine induced pluripotent stem cells in vitro. Vet. J. 194(3), 369–374 (2012)

    Article  Google Scholar 

  • Augst, A.D., Kong, H.J., Mooney, D.J.: Alginate hydrogels as biomaterials. Macromol. Biosci. 6(8), 623–633 (2006)

    Article  Google Scholar 

  • Augustine, R.: Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Prog. Biomater. 7(2), 77–92 (2018)

    Article  Google Scholar 

  • Bagherifard, A., et al.: Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med. Biol. Eng. Compu. 58, 1681–1693 (2020)

    Article  Google Scholar 

  • Bartolo, P., et al.: Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann. 61(2), 635–655 (2012)

    Article  Google Scholar 

  • Bertassoni, L.E., et al.: Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13), 2202–2211 (2014)

    Article  Google Scholar 

  • Bhattacharjee, T., et al.: Writing in the granular gel medium. Sci. Adv. 1(8), e1500655 (2015)

    Article  Google Scholar 

  • Bilic, J., Belmonte, J.C.I.: Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells 30(1), 33–41 (2012)

    Article  Google Scholar 

  • Bose, S., Vahabzadeh, S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504 (2013)

    Article  Google Scholar 

  • Bracci, R., Maccaroni, E., Cascinu, S.: Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 368, 2043–2045 (2013)

    Article  Google Scholar 

  • Brunello, G., et al.: Powder-based 3D printing for bone tissue engineering. Biotechnol. Adv. 34(5), 740–753 (2016)

    Article  Google Scholar 

  • Butscher, A., et al.: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 7(3), 907–920 (2011)

    Article  Google Scholar 

  • Casteilla, L. and C. Dani, Adipose tissue-derived cells: from physiology to regenerative medicine. 2008.

  • Castilho, M., et al.: Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7(1), 015004 (2015)

    Article  Google Scholar 

  • Chang, M.C., Ko, C.-C., Douglas, W.H.: Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24(17), 2853–2862 (2003)

    Article  Google Scholar 

  • Chen, W., et al.: 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem. Eng. J. 382, 122986 (2020)

    Article  Google Scholar 

  • Christensen, K., et al.: Freeform inkjet printing of cellular structures with bifurcations. Biotechnol. Bioeng. 112(5), 1047–1055 (2015)

    Article  Google Scholar 

  • Chung, J.H., et al.: Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 1(7), 763–773 (2013)

    Article  Google Scholar 

  • Colosi, C., et al.: Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28(4), 677–684 (2016)

    Article  Google Scholar 

  • Costantini, M., et al.: Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131, 98–110 (2017)

    Article  Google Scholar 

  • Critchley, S.E., Kelly, D.J.: Bioinks for bioprinting functional meniscus and articular cartilage. J. 3D Print. Med. 1(4), 269–290 (2017)

    Article  Google Scholar 

  • Cui, X., Boland, T.: Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31), 6221–6227 (2009)

    Article  Google Scholar 

  • Cui, X., et al.: Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18(11–12), 1304–1312 (2012)

    Article  Google Scholar 

  • Daly, A.C., et al.: 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv. Healthcare Mater. 5(18), 2353–2362 (2016)

    Article  Google Scholar 

  • Daly, A.C., et al.: A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8(4), 045002 (2016)

    Article  Google Scholar 

  • D’andrea, F., et al.: Large-scale production of human adipose tissue from stem cells: a new tool for regenerative medicine and tissue banking. Tissue Eng. Part C: Methods 14(3), 233–242 (2008)

    Article  Google Scholar 

  • de Amorim Almeida, H., da Silva Bártolo, P.J.: Virtual topological optimisation of scaffolds for rapid prototyping. Med. Eng. Phys. 32(7), 775–782 (2010)

    Article  Google Scholar 

  • De Ugarte, D.A., et al.: Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3), 101–109 (2003)

    Article  Google Scholar 

  • Deo, K.A., et al.: Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D Bioprinted Scaffolds. Tissue Eng. Part A 26(5–6), 318–338 (2020)

    Article  Google Scholar 

  • Dhawan, A., et al.: Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. JAAOS-J. Am. Acad. Orthopaedic Surg. 27(5), e215–e226 (2019)

    Article  Google Scholar 

  • Di Bella, C., et al.: In situ handheld three-dimensional bioprinting for cartilage regeneration. J. Tissue Eng. Regen. Med. 12(3), 611–621 (2018)

    Article  Google Scholar 

  • Dias, M.R., et al.: Optimization of scaffold design for bone tissue engineering: a computational and experimental study. Med. Eng. Phys. 36(4), 448–457 (2014)

    Article  Google Scholar 

  • Doiphode, N.D., et al.: Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair. J. Mater. Sci. - Mater. Med. 22(3), 515–523 (2011)

    Article  Google Scholar 

  • Dragoo, J.L., et al.: Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am. J. Sports Med. 42(3), 610–618 (2014)

    Article  Google Scholar 

  • Duan, B., Wang, M.: Selective laser sintering and its application in biomedical engineering. MRS Bull. 36(12), 998–1005 (2011)

    Article  Google Scholar 

  • Duncan, A.W., Dorrell, C., Grompe, M.: Stem cells and liver regeneration. Gastroenterology 137(2), 466–481 (2009)

    Article  Google Scholar 

  • Duymaz, B.T., et al.: 3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior. Eur. Polymer J. 119, 426–437 (2019)

    Article  Google Scholar 

  • Egan, P.F.: Integrated design approaches for 3D printed tissue scaffolds: review and outlook. Materials 12(15), 2355 (2019)

    Article  Google Scholar 

  • Esmaeili, S., Khandan, A., Saber-Samandari, S.: Mechanical performance of three-dimensional bio-nanocomposite scaffolds designed with digital light processing for biomedical applications. Iran. J. Med. Phys. 15, 328–328 (2018)

    Google Scholar 

  • Esmaeili, S., et al.: An artificial blood vessel fabricated by 3D printing for pharmaceutical application. Nanomed. J. 6(3), 183–194 (2019)

    Google Scholar 

  • Esmaeili, S., et al.: A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation. Eur. J. Orthop. Surg. Traumatol. 30(1), 123–131 (2020)

    Article  Google Scholar 

  • Faramarzi, N., et al.: Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv. Healthcare Mater. 7(11), 1701347 (2018)

    Article  Google Scholar 

  • Fedorovich, N.E., et al.: Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 14(1), 127–133 (2008)

    Article  Google Scholar 

  • Fereshteh, Z.: Freeze-drying technologies for 3D scaffold engineering Functional 3D tissue engineering scaffolds, pp. 151–174. Elsevier (2018)

    Book  Google Scholar 

  • Filardo, G., et al.: Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single-versus double-spinning approach. Knee Surg. Sports Traumatol. Arthrosc. 20(10), 2082–2091 (2012)

    Article  Google Scholar 

  • Foroutan, S., M. Hashemian, and A. Khandan, A Porous Sodium Alginate-CaSiO3 Polymer Reinforced with Graphene Nanosheet: Fabrication and Optimality Analysis. Fibers and Polymers, 2020.

  • Fujita, B., Zimmermann, W.-H.: Myocardial tissue engineering strategies for heart repair: current state of the art. Interact. Cardiovasc. Thorac. Surg. 27(6), 916–920 (2018)

    Google Scholar 

  • Gao, Q., et al.: 3D bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater. Sci. Eng. 3(3), 399–408 (2017)

    Article  Google Scholar 

  • Gao, L., et al.: Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ. Res. 120(8), 1318–1325 (2017)

    Article  Google Scholar 

  • Ge, Z., et al.: Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J. Biomater. Appl. 23(6), 533–547 (2009)

    Article  Google Scholar 

  • Gepstein, L.: Derivation and potential applications of human embryonic stem cells. Circ. Res. 91(10), 866–876 (2002)

    Article  Google Scholar 

  • Ghasemi, E., et al.: Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis. Dental Res. J. 12(1), 57 (2015)

    Article  Google Scholar 

  • Ghasemi, M., Nejad, M.G., Bagzibagli, K.: Knowledge Management Orientation: An Innovative Perspective to Hospital Management. Iran. J. Public Health 46(12), 1639 (2017)

    Google Scholar 

  • Ghayour, H., et al.: Study of the effect of the Zn 2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co 1–x Zn x Fe 2 O 4 ferrite for magnetic hyperthermia. J. Aust. Ceram. Soc. 54(2), 223–230 (2018)

    Article  Google Scholar 

  • Giordano, R.A., et al.: Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 8(1), 63–75 (1997)

    Article  Google Scholar 

  • Gu, Q., et al.: Three-dimensional bio-printing. Sci. China Life Sci. 58(5), 411–419 (2015)

    Article  Google Scholar 

  • Gungor-Ozkerim, P.S., et al.: Bioinks for 3D bioprinting: an overview. Biomater. Sci. 6(5), 915–946 (2018)

    Article  Google Scholar 

  • Haleem, A., Javaid, M.: Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: An overview. Clin. Epidemiol. Global Health 7(4), 571–577 (2019)

    Article  Google Scholar 

  • Haleem, A., et al.: 3D printing applications in bone tissue engineering. Journal of Clinical Orthopaedics and Trauma 11, S118–S124 (2020)

    Article  Google Scholar 

  • Hashemi, S.A., et al.: Micro-finite element model to investigate the mechanical stimuli in scaffolds fabricated via space holder technique for cancellous bone. ADMT Journal 13(1), 51–58 (2020)

    Google Scholar 

  • Hasirci, V.N., et al.: 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front Bioeng Biotechnol 7, 164 (2019)

    Article  Google Scholar 

  • Highley, C.B., Rodell, C.B., Burdick, J.A.: Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27(34), 5075–5079 (2015)

    Article  Google Scholar 

  • Hinton, T.J., et al.: Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1(9), e1500758 (2015)

    Article  Google Scholar 

  • Hoang, D., et al., Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Annals of translational medicine, 2016. 4(23).

  • Holmes, B., et al.: A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27(6), 064001 (2016)

    Article  Google Scholar 

  • Hu, X., et al.: 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers 11(10), 1601 (2019)

    Article  Google Scholar 

  • Hussain, T., Gomez-Cia, T., Valverde, I.: Potential of 3D-printed models in planning structural interventional procedures. Interv. Cardiol. 7(4), 343–350 (2015)

    Google Scholar 

  • Ilkhanizadeh, S., Teixeira, A.I., Hermanson, O.: Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28(27), 3936–3943 (2007)

    Article  Google Scholar 

  • Izadpanah, R., et al.: Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell. Biochem. 99(5), 1285–1297 (2006)

    Article  Google Scholar 

  • Jakab, K., et al.: Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14(3), 413–421 (2008)

    Article  Google Scholar 

  • Jammalamadaka, U., Tappa, K.: Recent advances in biomaterials for 3D printing and tissue engineering. J. Funct. Biomater. 9(1), 22 (2018)

    Article  Google Scholar 

  • Javaid, M., Haleem, A.: Additive manufacturing applications in orthopaedics: a review. J. Clin. Orthopaedics Trauma 9(3), 202–206 (2018)

    Article  Google Scholar 

  • Javaid, M., Haleem, A.: 4D printing applications in medical field: a brief review. Clin. Epidemiol. Global Health 7(3), 317–321 (2019a)

    Article  Google Scholar 

  • Javaid, M. and A. Haleem, Current status and applications of additive manufacturing in dentistry: A literature-based review. Journal of oral biology and craniofacial research, 2019.

  • Jia, W., et al.: Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106, 58–68 (2016)

    Article  Google Scholar 

  • Joneidi Yekta, H., et al.: Mathematically and experimentally defined porous bone scaffold produced for bone substitute application. Nanomed. J. 5(4), 227–234 (2018)

    Google Scholar 

  • Jungreuthmayer, C., et al.: Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model. Med. Eng. Phys. 31(4), 420–427 (2009)

    Article  Google Scholar 

  • Kamyab Moghadas, B., Azadi, M.: Fabrication of nanocomposite foam by supercritical CO2 technique for application in tissue engineering. J. Tissues Mater. 2(1), 23–32 (2019)

    Google Scholar 

  • Kang, Y., et al.: A study on the in vitro degradation properties of poly (l-lactic acid)/β-tricalcuim phosphate (PLLA/β-TCP) scaffold under dynamic loading. Med. Eng. Phys. 31(5), 589–594 (2009)

    Article  Google Scholar 

  • Karamian, E., et al.: Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique. Nanomed. J. 4(3), 177–183 (2017)

    Google Scholar 

  • Kengla, C., et al.: 3-D bioprinting technologies for tissue engineering applications rapid prototyping of biomaterials, pp. 269–288. Elsevier (2020)

    Google Scholar 

  • Ker, E.D., et al.: Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32(32), 8097–8107 (2011)

    Article  Google Scholar 

  • Khalil, S. and W. Sun, Bioprinting endothelial cells with alginate for 3D tissue constructs. Journal of biomechanical engineering, 2009. 131(11).

  • Khandan, A., Ozada, N.: Bredigite-Magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: A study on their magnetic properties. J. Alloy. Compd. 726, 729–736 (2017)

    Article  Google Scholar 

  • Khandan, A., et al.: Hydrogels: Types, structure, properties, and applications. Biomat Tiss Eng 4(27), 143–169 (2017)

    Google Scholar 

  • Khandan, A., et al.: On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds. Ceram. Int. 44(3), 3141–3148 (2018)

    Article  Google Scholar 

  • Khazaei, S., et al. (2020). Improving pulp revascularization outcomes with buccal fat autotransplantation. Journal of Tissue Engineering and Regenerative Medicine, 14(9), 1227–1235.

  • Kikuchi, M., et al.: Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials 25(1), 63–69 (2004)

    Article  Google Scholar 

  • Kim, Y., et al.: Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells. Stem Cell Res. Ther. 9(1), 1–10 (2018)

    Article  Google Scholar 

  • Koch, L., et al.: Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109(7), 1855–1863 (2012)

    Article  Google Scholar 

  • Kolan, K.C., et al.: Effect of material, process parameters, and simulated body fluids on mechanical properties of 13–93 bioactive glass porous constructs made by selective laser sintering. J. Mech. Behav. Biomed. Mater. 13, 14–24 (2012)

    Article  Google Scholar 

  • Kolesky, D.B., et al.: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26(19), 3124–3130 (2014)

    Article  Google Scholar 

  • Kolesky, D.B., et al.: Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. 113(12), 3179–3184 (2016)

    Article  Google Scholar 

  • Kordjamshidi, A., et al.: Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation. Ceram. Int. 45(11), 14126–14135 (2019)

    Article  Google Scholar 

  • Kucharska, M., et al.: Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Mater. Lett. 85, 124–127 (2012)

    Article  Google Scholar 

  • Lam, T., et al.: Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J. Biomed. Mater. Res. B Appl. Biomater. 107(8), 2649–2657 (2019)

    Article  Google Scholar 

  • Leberfinger, A.N., et al.: Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl. Med. 6(10), 1940–1948 (2017)

    Article  Google Scholar 

  • Lee, W., et al.: Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8), 1587–1595 (2009)

    Article  Google Scholar 

  • Lee, W., et al.: Three-dimensional bioprinting of rat embryonic neural cells. NeuroReport 20(8), 798–803 (2009)

    Article  Google Scholar 

  • Lee, C.H., et al.: Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. The Lancet 376(9739), 440–448 (2010)

    Article  Google Scholar 

  • Lee, Y.-B., et al.: Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223(2), 645–652 (2010)

    Article  Google Scholar 

  • Lee, V., et al.: Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods 20(6), 473–484 (2014)

    Article  Google Scholar 

  • Lee, V.K., et al.: Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28), 8092–8102 (2014)

    Article  Google Scholar 

  • Lee, J., Park, C.H., Kim, C.S.: Microcylinder-laden gelatin-based bioink engineered for 3D bioprinting. Mater. Lett. 233, 24–27 (2018)

    Article  Google Scholar 

  • Li, Z., et al., Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue Engineering Part A, 2020.

  • Lin, W., et al., Endowing ipsc-derived mscs with angiogenic and keratinogenic differentiation potential: A promising cell source for skin tissue engineering. BioMed research international, 2018. 2018.

  • Liu, X., Ma, P.X.: Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32(3), 477–486 (2004)

    Article  Google Scholar 

  • Liu, M., et al.: Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5(1), 1–20 (2017)

    Article  Google Scholar 

  • Liu, Y., Zhou, G., Cao, Y.: Recent progress in cartilage tissue engineering—our experience and future directions. Engineering 3(1), 28–35 (2017)

    Article  Google Scholar 

  • Lo, H., Ponticiello, M., Leong, K.: Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng. 1(1), 15–28 (1995)

    Article  Google Scholar 

  • Lozano, R., et al.: 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67, 264–273 (2015)

    Article  Google Scholar 

  • Ma, H., et al.: 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 79, 37–59 (2018)

    Article  Google Scholar 

  • Madi, K., et al.: Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med. Eng. Phys. 35(9), 1298–1312 (2013)

    Article  Google Scholar 

  • Maghsoudlou, M.A., et al., Bone Regeneration Using Bio-Nanocomposite Tissue Reinforced with Bioactive Nanoparticles for Femoral Defect Applications in Medicine. Avicenna Journal of Medical Biotechnology, 2020. 12(2).

  • Malda, J., et al.: 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25(36), 5011–5028 (2013)

    Article  Google Scholar 

  • Marga, F., et al.: Toward engineering functional organ modules by additive manufacturing. Biofabrication 4(2), 022001 (2012)

    Article  Google Scholar 

  • Marx, R.E.: Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 10(4), 225–228 (2001)

    Article  Google Scholar 

  • Marx, R.E.: Platelet-rich plasma: evidence to support its use. J. Oral Maxillofac. Surg. 62(4), 489–496 (2004)

    Article  Google Scholar 

  • Marx, R.E., et al.: Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodontol. 85(6), 638–646 (1998)

    Article  Google Scholar 

  • Matai, I., et al.: Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020)

    Article  Google Scholar 

  • McCarrel, T.M., Minas, T., Fortier, L.A.: Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy. JBJS 94(19), e143 (2012)

    Article  Google Scholar 

  • Mikos, A.G., et al.: Wetting of poly (L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15(1), 55–58 (1994)

    Article  Google Scholar 

  • Mishra, A.K., et al.: Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am. J. Sports Med. 42(2), 463–471 (2014)

    Article  Google Scholar 

  • Moghadas, B.K., et al.: The morphological properties and biocompatibility studies of synthesized nanocomposite foam from modified polyethersulfone/graphene oxide using supercritical CO2. J. Macromol. Sci., Part A 57(6), 451–460 (2020)

    Article  Google Scholar 

  • Monshi, M., et al.: A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application. Nanomed. J. 7(2), 138–148 (2020)

    Google Scholar 

  • Montazeran, A.H., Saber Samandari, S., Khandan, A.: Artificial intelligence investigation of three silicates bioceramics-magnetite bio-nanocomposite: hyperthermia and biomedical applications. Nanomed. J. 5(3), 163–171 (2018)

    Google Scholar 

  • Moradi-Dastjerdi, R., Behdinan, K.: Thermo-electro-mechanical behavior of an advanced smart lightweight sandwich plate. Aerosp. Sci. Technol. 106, 106142 (2020)

    Article  Google Scholar 

  • Moradi-Dastjerdi, R., Behdinan, K.: Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers. Int. J. Mech. Sci. 167, 105283 (2020)

    Article  Google Scholar 

  • Moradi-Dastjerdi, R., Behdinan, K.: Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments. Aerosp. Sci. Technol. 110, 106476 (2021)

    Article  Google Scholar 

  • Moradi-Dastjerdi, R., Radhi, A., Behdinan, K.: Damped dynamic behavior of an advanced piezoelectric sandwich plate. Compos. Struct. 243, 112243 (2020)

    Article  Google Scholar 

  • Morales, E.E., Wingert, R.A.: Renal stem cell reprogramming: prospects in regenerative medicine. World J. Stem Cells 6(4), 458 (2014)

    Article  Google Scholar 

  • Müller, W.E., et al.: A new printable and durable N, O-carboxymethyl chitosan–Ca 2+–polyphosphate complex with morphogenetic activity. J. Mater. Chem. B 3(8), 1722–1730 (2015)

    Article  Google Scholar 

  • Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773 (2014)

    Article  Google Scholar 

  • Murphy, S.V., Skardal, A., Atala, A.: Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res., Part A 101(1), 272–284 (2013)

    Article  Google Scholar 

  • Murphy, C., et al.: 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int J Bioprint 3(1), 54–64 (2017)

    Article  Google Scholar 

  • Naghieh, S., et al.: Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J. Mech. Behav. Biomed. Mater. 93, 183–193 (2019)

    Article  Google Scholar 

  • Nakamura, M., et al.: Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11(11–12), 1658–1666 (2005)

    Article  Google Scholar 

  • Nam, Y.S., Park, T.G.: Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res.: Off. J. Soc. Biomater. Japan. Soc. Biomater. Austr. Soc. Biomater. Kor. Soc. Biomater. 47(1), 8–17 (1999)

    Article  Google Scholar 

  • Negi, S., S. Dhiman, and R.K. Sharma Basics and applications of rapid prototyping medical models. Rapid Prototyping Journal, 2014.

  • Nguyen, D., et al.: Functional characterization of three-dimensional (3d) human liver tissues generated by an automated bioprinting platform. FASEB J. 29, 424 (2015)

    Article  Google Scholar 

  • Nguyen, T., et al.: Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: A multiscale model. Med. Eng. Phys. 57, 40–50 (2018)

    Article  Google Scholar 

  • Nichol, J.W., et al.: Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21), 5536–5544 (2010)

    Article  Google Scholar 

  • Norotte, C., et al.: Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30), 5910–5917 (2009)

    Article  Google Scholar 

  • Okita, K., Ichisaka, T., Yamanaka, S.: Generation of germline-competent induced pluripotent stem cells. Nature 448(7151), 313–317 (2007)

    Article  Google Scholar 

  • Ong, C.S., et al.: 3D bioprinting using stem cells. Pediatr. Res. 83(1), 223–231 (2018)

    Article  Google Scholar 

  • Phillippi, J.A., et al.: Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells 26(1), 127–134 (2008)

    Article  Google Scholar 

  • Qasim, M., et al.: 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int. J. Nanomed. 14, 1311 (2019)

    Article  Google Scholar 

  • Qasim, M., Chae, D.S., Lee, N.Y.: Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int. J. Nanomed. 14, 4333 (2019)

    Article  Google Scholar 

  • Rad, A.S., et al.: X12N12 (X= Al, B) clusters for protection of vitamin C; molecular modeling investigation. Surf. Interf. 15, 30–37 (2019)

    Article  Google Scholar 

  • Razavi, M.: Metallic scaffolds. Biomater. Tissue Eng. 4, 170–194 (2017)

    Google Scholar 

  • Rezwan, K., et al.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–3431 (2006)

    Article  Google Scholar 

  • Riboh, J.C., et al.: Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am. J. Sports Med. 44(3), 792–800 (2016)

    Article  Google Scholar 

  • Riyazi, N., et al.: Association of the risk of osteoarthritis with high innate production of interleukin-1β and low innate production of interleukin-10 ex vivo, upon lipopolysaccharide stimulation. Arthritis Rheum. 52(5), 1443–1450 (2005)

    Article  Google Scholar 

  • Robbins, J.B., et al.: A novel in vitro three-dimensional bioprinted liver tissue system for drug development. FASEB J 27(872), 812 (2013)

    Google Scholar 

  • Romanazzo, S., Nemec, S., Roohani, I.: iPSC bioprinting: Where are We at? Materials 12(15), 2453 (2019)

    Article  Google Scholar 

  • Roseti, L., et al.: Three-dimensional bioprinting of cartilage by the use of stem cells: A strategy to improve regeneration. Materials 11(9), 1749 (2018)

    Article  Google Scholar 

  • Sahmani, S., et al., Effect of magnetite nanoparticles on the biological and mechanical properties of hydroxyapatite porous scaffolds coated with ibuprofen drug. Materials Science and Engineering: C, 2020: p. 110835.

  • Sahmani, S., et al.: Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: fabrication, characterization and simulation. J. Mech. Behav. Biomed. Mater. 95, 76–88 (2019)

    Article  Google Scholar 

  • Sahmani, S., et al.: Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. Eur.Phys. J. Plus 134(1), 7 (2019)

    Article  Google Scholar 

  • Sahmani, S., et al.: Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation. Ceram. Int. 46(2), 2447–2456 (2020)

    Article  Google Scholar 

  • Sakaguchi, Y., et al.: Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthr. Rheumatism: Off. J. Am. College Rheumatol. 52(8), 2521–2529 (2005)

    Article  Google Scholar 

  • Salem, H.K., Thiemermann, C.: Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3), 585–596 (2010)

    Article  Google Scholar 

  • Salmani, M.M., et al.: Synergic effects of magnetic nanoparticles on hyperthermia-based therapy and controlled drug delivery for bone substitute application. J. Supercond. Novel Magn. 33(9), 2809–2820 (2020)

    Article  Google Scholar 

  • Sancho-Bru, P., et al.: Directed differentiation of murine-induced pluripotent stem cells to functional hepatocyte-like cells. J. Hepatol. 54(1), 98–107 (2011)

    Article  Google Scholar 

  • Schugens, C., et al.: Polylactide macroporous biodegradable implants for cell transplantation II Preparation of polylactide foams by liquid-liquid phase separation. J. Biomed. Mater. Res.: Off. J. Soc. Biomater. Japan. Soc. Biomater. 30(4), 449–461 (1996)

    Article  Google Scholar 

  • Scotti, C., et al., Meniscus repair and regeneration: review on current methods and research potential. 2013.

  • Shafiee, A., Atala, A.: Tissue engineering: toward a new era of medicine. Annu. Rev. Med. 68, 29–40 (2017)

    Article  Google Scholar 

  • Shirani, K., et al.: A narrative review of COVID-19: the new pandemic disease. Iran. J. Med. Sci. 45(4), 233 (2020)

    Google Scholar 

  • Si-Tayeb, K., Lemaigre, F.P., Duncan, S.A.: Organogenesis and development of the liver. Dev. Cell 18(2), 175–189 (2010)

    Article  Google Scholar 

  • Skardal, A., Atala, A.: Biomaterials for integration with 3-D bioprinting. Ann. Biomed. Eng. 43(3), 730–746 (2015)

    Article  Google Scholar 

  • Skardal, A., et al.: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16(8), 2675–2685 (2010)

    Article  Google Scholar 

  • Skardal, A., et al.: Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1(11), 792–802 (2012)

    Article  Google Scholar 

  • Song, Z., et al.: Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 19(11), 1233–1242 (2009)

    Article  Google Scholar 

  • Strickley, R.G.: Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21(2), 201–230 (2004)

    Article  Google Scholar 

  • Sultana, N., Wang, M.: Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J. Mater. Sci. - Mater. Med. 19(7), 2555 (2008)

    Article  Google Scholar 

  • Sun, K., et al.: Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Biochem. Biophys. Res. Commun. 477(4), 1085–1091 (2016)

    Article  Google Scholar 

  • Sun, C., et al.: Self-healing polymers using electrosprayed microcapsules containing oil: Molecular dynamics simulation and experimental studies. J. Mol. Liq. 325, 115182 (2021)

    Article  Google Scholar 

  • Suntornnond, R., et al.: A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  • Takahashi, K., et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)

    Article  Google Scholar 

  • Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)

    Article  Google Scholar 

  • Tang, S., et al.: Hollow mesoporous zirconia nanocapsules for drug delivery. Adv. Func. Mater. 20(15), 2442–2447 (2010)

    Article  Google Scholar 

  • Tang, Z.B., et al.: Posterolateral spinal fusion with nano-hydroxyapatite–collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model. J. Tissue Eng. Regen. Med. 6(4), 325–336 (2012)

    Article  Google Scholar 

  • Thomson, J.A., et al.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)

    Article  Google Scholar 

  • Tiburcy, M., et al.: Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135(19), 1832–1847 (2017)

    Article  Google Scholar 

  • Trombetta, R., et al.: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 45(1), 23–44 (2017)

    Article  Google Scholar 

  • Utama, R.H., et al.: A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. Iscience 23(10), 101621 (2020)

    Article  Google Scholar 

  • Wagner, W., et al.: Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33(11), 1402–1416 (2005)

    Article  Google Scholar 

  • Wang, X., et al.: Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 12(1), 83–90 (2006)

    Article  Google Scholar 

  • Wang, X., Song, G., Lou, T.: Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Med. Eng. Phys. 32(4), 391–397 (2010)

    Article  Google Scholar 

  • Wang, X., et al.: Injectable silk-polyethylene glycol hydrogels. Acta Biomater. 12, 51–61 (2015)

    Article  Google Scholar 

  • Wang, Y., et al.: Nanoscale 3D bioprinting for osseous tissue manufacturing. Int. J. Nanomed. 15, 215 (2020)

    Article  Google Scholar 

  • Wei, L., et al.: 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioactive Mater. 4, 256–260 (2019)

    Article  Google Scholar 

  • Wieding, J., et al.: Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions. Med. Eng. Phys. 35(4), 422–432 (2013)

    Article  Google Scholar 

  • Wu, C., et al.: In vitro bioactivity of akermanite ceramics. J. Biomed. Mater. Res. Part a: Off. J. Soc. Biomater., the Japan. Soc. Biomater., Austral. Soc. Biomater. Kor. Soc. Biomater. 76(1), 73–80 (2006)

    Article  Google Scholar 

  • Wu, Y., et al.: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10), 2648–2659 (2007)

    Article  Google Scholar 

  • Xu, T., et al.: Inkjet printing of viable mammalian cells. Biomaterials 26(1), 93–99 (2005)

    Article  Google Scholar 

  • Xu, T., et al.: Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19), 3580–3588 (2006)

    Google Scholar 

  • Xu, T., et al.: Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1(3), 035001 (2009)

    Article  Google Scholar 

  • Xue, Y., et al.: Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9(1), 99–109 (2009)

    Article  Google Scholar 

  • Yang, N., Tian, Y., Zhang, D.: Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering. Med. Eng. Phys. 37(11), 1037–1046 (2015)

    Article  Google Scholar 

  • Yang, Y., et al.: 3D bioprinted integrated osteochondral scaffold-mediated repair of articular cartilage defects in the rabbit knee. J. Med. Biol. Eng. 40(1), 71–81 (2020)

    Article  Google Scholar 

  • Yoo, D.: New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds. Med. Eng. Phys. 34(6), 762–776 (2012)

    Article  Google Scholar 

  • Yue, K., et al.: Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015)

    Article  Google Scholar 

  • Zhang, R., Ma, P.X.: Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering I preparation and morphology. J. Biomed. Mater. Res.: Off. J. Soc. Biomater., Japan. Soc. Biomater., Austral. Soc. Biomater. 44(4), 446–455 (1999)

    Article  Google Scholar 

  • Zhang, W., et al.: The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35), 9415–9424 (2011)

    Article  Google Scholar 

  • Zhang, Y.S., et al.: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016)

    Article  Google Scholar 

  • Zhang, Y.S., et al.: 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45(1), 148–163 (2017)

    Article  Google Scholar 

  • Zhu, S., et al., Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell stem cell, 2010. 7(6).

Download references

Acknowledgements

The authors would like to extend their gratitude for the support provided by the New Technology Research Centre, Tehran, and Iran. This research work was the result of joint support of the clinical scientist program, Isfahan University of Medical Sciences and the New Technology Research Centre, and Islamic Azad University, Tehran, Iran.

Funding

This work was not supported or grants by any Science Foundation. The work is self-funded and the funders had a role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the researchers participated in the design of this study. Asefnejad organize the work and collect the information and help in writing the manuscript. Ehsani and Khandan write the first draft of the manuscript. Iranmanesh perform the revison on dental materials. Ghadirinejad and Shahriari conduct the revision of language and referencing. Khandan and Asefnejad performed the statistical analysis. Samandari collected important background information. Khandan and Ehsani drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abbasali Khademi.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Consent for Publication

All authors read and approved the final manuscript and consented to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranmanesh, P., Ehsani, A., Khademi, A. et al. Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture). Transp Porous Med 142, 265–293 (2022). https://doi.org/10.1007/s11242-021-01618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01618-x

Keywords

Navigation