Skip to main content
Log in

Modified formulation of the interfacial boundary condition for the coupled Stokes–Darcy problem

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A modified formulation of the interfacial boundary condition for the coupling of the Stokes and Darcy models describing the incompressible fluid flow in the free space and porous medium domains is proposed using the dimension analysis procedure. The case is considered for the porous media formed by circular or square cylinders located in the centers of rectangular cells. The vorticity is derived as a linear combination of the tangential velocity components in the free space and porous medium. The proposed condition is potentially directly applicable for a class of 2D problems with an arbitrary shaped boundary for the boundary element method. The fluid flow problems are solved numerically using the Stokes flow model and analytically for the Stokes–Darcy flow model to determine the coefficients in the introduced linear dependence for the vorticity. As a result, the corresponding coefficients in the boundary condition are found as a porosity function for two types of the porous medium configuration. The approximate analytical estimation of the coefficients confirms the numerical dependencies. The verifications of the found coefficients were made by solving two 2D fluid flow problems. It is shown that the fluid flow calculated on the basis of the Stokes–Darcy flow model with modified boundary condition agrees well with the results of the microscopic Stokes flow model. The advantages of the proposed boundary condition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adler, P.M.: Porous Media: Geometry and Transports (Butterworth-Heinemann Series in Chemical Engineering). Butterworth-Heinemann, Oxford (1992). https://doi.org/10.1016/C2009-0-26183-6

    Book  Google Scholar 

  2. Allaire, G.: One-Phase Newtonian Flow, pp. 45–76. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-1920-0

    Book  Google Scholar 

  3. Auriault, J.L.: About the Beavers and Joseph boundary condition. Transp. Porous Media 83(2), 257–266 (2010). https://doi.org/10.1007/s11242-009-9435-9

    Article  MathSciNet  Google Scholar 

  4. Barenblatt, G.I.: Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9781107050242

    Book  MATH  Google Scholar 

  5. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)

    MATH  Google Scholar 

  6. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967). https://doi.org/10.1017/S0022112067001375

    Article  Google Scholar 

  7. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1(1), 27–34 (1947)

    Article  Google Scholar 

  8. Chandesris, M., Jamet, D.: Boundary conditions at a fluid-porous interface: an a priori estimation of the stress jump coefficients. Int. J. Heat Mass Transf. 50(17), 3422–3436 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.053

    Article  MATH  Google Scholar 

  9. Chandesris, M., Jamet, D.: Jump conditions and surface-excess quantities at a fluid/porous interface: a multi-scale approach. Transp. Porous Media 78, 419–438 (2009). https://doi.org/10.1007/s11242-008-9302-0

    Article  Google Scholar 

  10. Chen, H., Wang, X.P.: A one-domain approach for modeling and simulation of free fluid over a porous medium. J. Comput. Phys. 259(C), 650–671 (2014). https://doi.org/10.1016/j.jcp.2013.12.008

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J.T., Hsiao, C.C., Leu, S.Y.: A new method for Stokes problems with circular boundaries using degenerate kernel and Fourier series. Int. J. Numer. Methods Eng. 74(13), 1955–1987 (2008). https://doi.org/10.1002/nme.2240

    Article  MathSciNet  MATH  Google Scholar 

  12. Cieszko, M., Kubik, J.: Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid. Transp. Porous Media 34, 319–336 (1999). https://doi.org/10.1023/A:1006590215455

    Article  Google Scholar 

  13. Dullien, F.: Porous Media: Fluid Transport and Pore Structure. Academic Press, Cambridge (1991). https://doi.org/10.1016/C2009-0-26184-8

    Book  Google Scholar 

  14. Dunnett, S., Clement, C.: A numerical model of fibrous filters containing deposit. Eng. Anal. Bound. Elem. 33(5), 601–610 (2009). https://doi.org/10.1016/j.enganabound.2008.10.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Dunnett, S., Clement, C.: Numerical investigation into the loading behaviour of filters operating in the diffusional and interception deposition regimes. J. Aerosol Sci. 53, 85–99 (2012). https://doi.org/10.1016/j.jaerosci.2012.06.008

    Article  Google Scholar 

  16. Forchheimer, P.: Wasserbewegung durch boden. Zeitschrift des Vereins deutscher Ingenieure 45, 1782–1788 (1901)

    Google Scholar 

  17. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

  18. Hou, Y., Qin, Y.: On the solution of coupled Stokes/Darcy model with Beavers–Joseph interface condition. Comput. Math. Appl. 77(1), 50–65 (2019). https://doi.org/10.1016/j.camwa.2018.09.011

    Article  MathSciNet  MATH  Google Scholar 

  19. Jäger, W., Mikelić, A.: Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media 78, 489–508 (2009). https://doi.org/10.1007/s11242-009-9354-9

    Article  MathSciNet  Google Scholar 

  20. James, D.F., Davis, A.M.J.: Flow at the interface of a model fibrous porous medium. J. Fluid Mech. 426, 47–72 (2001). https://doi.org/10.1017/S0022112000002160

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Japan 14(4), 527–532 (1959)

    Article  MathSciNet  Google Scholar 

  22. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002). https://doi.org/10.1137/S0036142901392766

    Article  MathSciNet  MATH  Google Scholar 

  23. Mardanov, R., Dunnett, S., Zaripov, S.: Modeling of fluid flow in periodic cell with porous cylinder using a boundary element method. Eng. Anal. Bound. Elem. 68, 54–62 (2016). https://doi.org/10.1016/j.enganabound.2016.03.015

    Article  MathSciNet  MATH  Google Scholar 

  24. Mardanov, R., Zaripov, S., Maklakov, D.: Two-dimensional Stokes flows in porous medium composed of a large number of circular inclusions. Eng. Anal. Bound. Elem. 113, 204–218 (2020). https://doi.org/10.1016/j.enganabound.2019.12.010

    Article  MathSciNet  MATH  Google Scholar 

  25. Mosina, E.V., Chernyshev, I.V.: Slip condition on the surface of a model fibrous porous medium. Tech. Phys. Lett. 35(3), 245–248 (2009). https://doi.org/10.1134/S1063785009030158

    Article  Google Scholar 

  26. Neale, G., Nader, W.: Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52(4), 475–478 (1974). https://doi.org/10.1002/cjce.5450520407

    Article  Google Scholar 

  27. Nield, D., Bejan, A.: One-Phase Newtonian Flow, 3rd edn. Springer, New York (2006). https://doi.org/10.1007/0-387-33431-9

    Book  Google Scholar 

  28. Nield, D.A.: The Beavers–Joseph boundary condition and related matters: a historical and critical note. Transp. Porous Media 78(3), 537 (2009). https://doi.org/10.1007/s11242-009-9344-y

    Article  MathSciNet  Google Scholar 

  29. Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995). https://doi.org/10.1016/0017-9310(94)00346-W

    Article  MATH  Google Scholar 

  30. Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transf. 38(14), 2647–2655 (1995). https://doi.org/10.1016/0017-9310(94)00347-X

    Article  MATH  Google Scholar 

  31. Prakash, J., Raja Sekhar, G.P., Kohr, M.: Stokes flow of an assemblage of porous particles: stress jump condition. Zeitschrift für angewandte Mathematik und Physik 62, 1027–1046 (2011). https://doi.org/10.1007/s00033-011-0123-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971). https://doi.org/10.1002/sapm197150293

    Article  MATH  Google Scholar 

  33. Sokolnikoff, I.S.: Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, p. 361. Wiley, New York (1964)

    MATH  Google Scholar 

  34. Vafai, K.: Handbook of Porous Media. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  35. Vainshtein, P., Shapiro, M., Gutfinger, C.: Creeping flow past and within a permeable spheroid. Int. J. Multiph. Flow 28(12), 1945–1963 (2002). https://doi.org/10.1016/S0301-9322(02)00106-4

    Article  MATH  Google Scholar 

  36. Valdes-Parada, F.J., Aguilar-Madera, C.G., Ochoa-Tapia, J.A., Goyeau, B.: Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327–339 (2013). https://doi.org/10.1016/j.advwatres.2013.08.008

    Article  MATH  Google Scholar 

  37. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986). https://doi.org/10.1007/BF01036523

    Article  Google Scholar 

  38. Zaripov, S., Mardanov, R., Sharafutdinov, V.: Determination of Brinkman model parameters using Stokes flow model. Transp. Porous Media 130(2), 529–557 (2019). https://doi.org/10.1007/s11242-019-01324-9

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Mardanov and Sharafutdinov was carried out as part of the implementation of the development program for the Scientific and Educational Mathematical Center of the Volga Federal District, Project Number 075-02-2020-1478. The work by Zaripov was performed in the frameworks of the Russian Government Program of Competitive Growth at Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Mardanov.

Additional information

Communicated by Patrick Jenny.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardanov, R.F., Sharafutdinov, V.F. & Zaripov, S.K. Modified formulation of the interfacial boundary condition for the coupled Stokes–Darcy problem. Theor. Comput. Fluid Dyn. 35, 449–476 (2021). https://doi.org/10.1007/s00162-021-00568-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00568-w

Keywords

Navigation