Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical tools for dissecting cell division

Abstract

Components of the cell division machinery typically function at varying cell cycle stages and intracellular locations. To dissect cellular mechanisms during the rapid division process, small-molecule probes act as complementary approaches to genetic manipulations, with advantages of temporal and in some cases spatial control and applicability to multiple model systems. This Review focuses on recent advances in chemical probes and applications to address select questions in cell division. We discuss uses of both enzyme inhibitors and chemical inducers of dimerization, as well as emerging techniques to promote future investigations. Overall, these concepts may open new research directions for applying chemical probes to advance cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemically induced dimerization recruits effector proteins to anchors.
Fig. 2: Centrinone inhibits PLK4 activity.
Fig. 3: Kinesin motors on spindle microtubules.
Fig. 4: Aurora kinases regulate kinetochore–microtubule interactions.
Fig. 5: Activating and silencing the SAC.
Fig. 6: Prospective strategies for modulating enzymatic activities.

Similar content being viewed by others

References

  1. Levine, M. S. & Holland, A. J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev. 32, 620–638 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Leibowitz, M. L., Zhang, C.-Z. & Pellman, D. Chromothripsis: a new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49, 183–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Knouse, K. A., Davoli, T., Elledge, S. J. & Amon, A. Aneuploidy in cancer: seq-ing answers to old questions. Annu. Rev. Cancer Biol. 1, 335–354 (2017).

    Article  Google Scholar 

  5. Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12–rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Ballister, E. R., Aonbangkhen, C., Mayo, A. M., Lampson, M. A. & Chenoweth, D. M. Localized light-induced protein dimerization in living cells using a photocaged dimerizer. Nat. Commun. 5, 5475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang, H. et al. Optogenetic control of kinetochore function. Nat. Chem. Biol. 13, 1096–1101 (2017). This article reports photocaged and photocleavable chemical optogenetic probes and their use for kinetochore studies. For example, recruitment of the motor protein CENP-E to kinetochores near spindle poles demonstrates selective transport toward the spindle equator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aonbangkhen, C., Zhang, H., Wu, D. Z., Lampson, M. A. & Chenoweth, D. M. Reversible control of protein localization in living cells using a photocaged-photocleavable chemical dimerizer. J. Am. Chem. Soc. 140, 11926–11930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Ballister, E. R., Ayloo, S., Chenoweth, D. M., Lampson, M. A. & Holzbaur, E. L. F. Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization. Curr. Biol. 25, R407–R408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, G.-Y. et al. Tension promotes kinetochore–microtubule release by Aurora B kinase. J. Cell Biol. https://doi.org/10.1083/jcb.202007030 (2021). Using chemical optogenetics to recruit Aurora B to an individual kinetochore, this report demonstrates that tension dictates contrasting chromosome error correction pathways: microtubules release at high tension or depolymerize at low tension. Furthermore, decreased inter-kinetochore tension using rigor inhibitors of mitotic kinesin motors slows microtubule release.

  12. Nigg, E. A. & Stearns, T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heald, R. & Khodjakov, A. Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J. Cell Biol. 211, 1103–1111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Aydogan, M. G. et al. An autonomous oscillation times and executes centriole biogenesis. Cell 181, 1566–1581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong, Y. L. et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155–1160 (2015). This paper reports development of the PLK4 inhibitor centrinone and applications in depleting centrosomes. In comparison to other approaches, centrinone offers advantages such as acute inhibition, reversibility and applicability across different model systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dudka, D., Castrogiovanni, C., Liaudet, N., Vassal, H. & Meraldi, P. Spindle-length-dependent HURP localization allows centrosomes to control kinetochore-fiber plus-end dynamics. Curr. Biol. 29, 3563–3578 (2019). This study used centrinone to deplete a centrosome and generate an asymmetric mitotic spindle. Comparing the spindle-bound molecules on the two halves of the spindle revealed an increase in the microtubule stabilizer HURP on the shorter half-spindle.

    Article  CAS  PubMed  Google Scholar 

  20. Guild, J., Ginzberg, M. B., Hueschen, C. L., Mitchison, T. J. & Dumont, S. Increased lateral microtubule contact at the cell cortex is sufficient to drive mammalian spindle elongation. Mol. Biol. Cell 28, 1975–1983 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yeow, Z. Y. et al. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature 585, 447–452 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Meitinger, F. et al. TRIM37 controls cancer-specific vulnerability to PLK4 inhibition. Nature 585, 440–446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lambrus, B. G. et al. A USP28–53BP1–p53–p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214, 143–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meitinger, F. et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214, 155–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fong, C. S. et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife 5, 1–18 (2016).

    Article  Google Scholar 

  28. Magidson, V., Lončarek, J., Hergert, P., Rieder, C. L. & Khodjakov, A. Laser microsurgery in the GFP era: a cell biologist’s perspective. Methods Cell. Biol. 82, 239–266 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Uteng, M., Hentrich, C., Miura, K., Bieling, P. & Surrey, T. Poleward transport of Eg5 by dynein–dynactin in Xenopus laevis egg extract spindles. J. Cell Biol. 182, 715–726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimamoto, Y., Forth, S. & Kapoor, T. M. Measuring pushing and braking forces generated by ensembles of kinesin-5 crosslinking two microtubules. Dev. Cell 34, 669–681 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sturgill, E. G., Norris, S. R., Guo, Y. & Ohi, R. Kinesin-5 inhibitor resistance is driven by kinesin-12. J. Cell Biol. 213, jcb.201507036 (2016).

    Article  Google Scholar 

  33. Sturgill, E. G. & Ohi, R. Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr. Biol. 23, 1280–1290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Drechsler, H., McHugh, T., Singleton, M. R., Carter, N. J. & McAinsh, A. D. The kinesin-12 Kif15 is a processive track-switching tetramer. eLife 3, e01724 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tolić, I. M. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. Eur. Biophys. J. 47, 191–203 (2018).

    Article  PubMed  Google Scholar 

  37. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Needleman, D. J. et al. Fast microtubule dynamics in meiotic spindles measured by single molecule imaging: evidence that the spindle environment does not stabilize microtubules. Mol. Biol. Cell 21, 323–333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elting, M. W., Prakash, M., Udy, D. B. & Dumont, S. Mapping load-bearing in the mammalian spindle reveals local kinetochore fiber anchorage that provides mechanical isolation and redundancy. Curr. Biol. 27, 2112–2122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Groen, A. C. et al. A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly. J. Cell Sci. 121, 2293–2300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vladimirou, E. et al. Nonautonomous movement of chromosomes in mitosis. Dev. Cell 27, 411–424 (2013).

    Article  Google Scholar 

  42. Begley, M. A. et al. K-fiber bundles in the mitotic spindle are mechanically reinforced by Kif15. Preprint at bioRxiv https://doi.org/10.1101/2020.05.19 (2020).

  43. Wood, K. W. et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl Acad. Sci. USA 107, 5839–5844 (2010). This paper reports the CENP-E rigor inhibitor GSK923925 and its use to prevent chromosome congression and activate the SAC.

    Article  CAS  PubMed  Google Scholar 

  44. Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F. & Cleveland, D. W. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat. Cell Biol. 2, 484–491 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Tanudji, M. et al. Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol. Biol. Cell 15, 3771–3781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barisic, M. et al. Microtubule detyrosination guides chromosomes during mitosis. Science 348, 799–803 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barisic, M. & Maiato, H. The tubulin code: a navigation system for chromosomes during mitosis. Trends Cell Biol. 26, 766–775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarangapani, K. K. & Asbury, C. L. Catch and release: how do kinetochores hook the right microtubules during mitosis? Trends Genet. 30, 150–159 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lampson, M. A. & Grishchuk, E. L. Mechanisms to avoid and correct erroneous kinetochore–microtubule attachments. Biology 6, 1 (2017).

    Article  PubMed Central  Google Scholar 

  50. Broad, A. J. & Deluca, J. G. The right place at the right time: Aurora B kinase localization to centromeres and kinetochores. Essays Biochem. 64, 299–311 (2020).

  51. Broad, A. J., DeLuca, K. F. & DeLuca, J. G. Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J. Cell Biol. 219, e201905144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hadders, M. A. et al. Untangling the contribution of haspin and Bub1 to Aurora B function during mitosis. J. Cell Biol. 219, e201907087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, F. et al. Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. J. Cell Biol. 199, 251–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Antoni, A., Maffini, S., Knapp, S., Musacchio, A. & Santaguida, S. A small-molecule inhibitor of haspin alters the kinetochore functions of Aurora B. J. Cell Biol. 199, 269–284 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liang, C. et al. Centromere-localized Aurora B kinase is required for the fidelity of chromosome segregation. J. Cell Biol. 219, e201907092 (2020).

    Article  PubMed  Google Scholar 

  56. Eswaran, J. et al. Structure and functional characterization of the atypical human kinase haspin. Proc. Natl Acad. Sci. USA 106, 20198–20203 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Yoo, T. Y. et al. Measuring NDC80 binding reveals the molecular basis of tension-dependent kinetochore–microtubule attachments. eLife 7, 1–34 (2018). A method using fluorescence lifetime microscopy and FRET was developed to measure binding between the NDC80 complex and microtubules in live cells. Combining this method with 5-Iodotubercidin to inhibit haspin kinase shows that the tension dependence of NDC80 binding requires centromere-localized Aurora B.

    Article  CAS  Google Scholar 

  58. García-Rodríguez, L. J., Kasciukovic, T., Denninger, V. & Tanaka, T. U. Aurora B–INCENP localization at centromeres/inner kinetochores is required for chromosome bi-orientation in budding yeast. Curr. Biol. 29, 1536–1544 (2019). Centromeric enrichment of Aurora B using rapamycin-induced dimerization rescues chromosome segregation fidelity when other pathways for localizing IPL1 to centromeres are inhibited.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore–microtubule attachments. Nature 468, 576–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome–spindle attachments during cell division. Nat. Cell Biol. 6, 232–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ye, A. A. et al. Aurora A kinase contributes to a pole-based error correction pathway. Curr. Biol. 25, 1842–1851 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chmátal, L., Yang, K., Schultz, R. M. & Lampson, M. A. Spatial regulation of kinetochore microtubule attachments by destabilization at spindle poles in meiosis I. Curr. Biol. 25, 1835–1841 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Santaguida, S., Tighe, A., D’Alise, A. M., Taylor, S. S. & Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190, 73–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dou, Z. et al. Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment. Proc. Natl Acad. Sci. USA 112, E4546–E4555 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Ji, Z., Gao, H. & Yu, H. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348, 1260–1264 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Hiruma, Y. et al. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348, 1264–1267 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Zeng, X. et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 18, 382–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sackton, K. L. et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature 514, 646–649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Richeson, K. V. et al. Paradoxical mitotic exit induced by a small molecule inhibitor of APC/CCdc20. Nat. Chem. Biol. 16, 546–555 (2020).

  72. Ballister, E. R., Riegman, M. & Lampson, M. A. Recruitment of Mad1 to metaphase kinetochores is sufficient to reactivate the mitotic checkpoint. J. Cell Biol. 204, 901–908 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuijt, T. E. F., Omerzu, M., Saurin, A. T. & Kops, G. J. P. L. Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma 123, 471–480 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Clackson, T. et al. Redesigning an FKBP–ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl Acad. Sci. USA 95, 10437–10442 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Kang, J., Chen, Y., Zhao, Y. & Yu, H. Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint. Proc. Natl Acad. Sci. USA 104, 20232–20237 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Aravamudhan, P., Goldfarb, A. A. & Joglekar, A. P. The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat. Cell Biol. 17, 868–879 (2015). Using rapamycin-induced dimerization, the SAC can be reactivated by recruiting MPS1 kinase close to its substrate, SPC105. This study proposes that a physical barrier between MPS1 and SPC105 silences the SAC when kinetochores achieve end-on microtubule attachment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Holland, A. J., Fachinetti, D., Han, J. S. & Cleveland, D. W. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc. Natl Acad. Sci. USA 109, E3350–E3357 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Daniel, K. et al. Conditional control of fluorescent protein degradation by an auxin-dependent nanobody. Nat. Commun. 9, 3297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lambrus, B. G. et al. p53 protects against genome instability following centriole duplication failure. J. Cell Biol. 210, 63–77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Renicke, C., Schuster, D., Usherenko, S., Essen, L. O. & Taxis, C. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem. Biol. 20, 619–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Hermann, A., Liewald, J. F. & Gottschalk, A. A photosensitive degron enables acute light-induced protein degradation in the nervous system. Curr. Biol. 25, R749–R750 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Zorba, A. et al. Allosteric modulation of a human protein kinase with monobodies. Proc. Natl Acad. Sci. USA 116, 13937–13942 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Yu, D. et al. Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. Nat. Methods 16, 1095–1100 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Bucko, P. J. et al. Subcellular drug targeting illuminates local kinase action. eLife 8, e52220 (2019). This article reports a strategy to inhibit kinase activity locally by conjugating kinase inhibitors to the SNAP-binding ligand CLP and fusing a SNAP tag to proteins that localize to specific intracellular structures. The bifunctional probe inhibits kinase activity proximal to the SNAP-tagged proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. DeLuca, K. F. et al. Aurora A kinase phosphorylates Hec1 to regulate metaphase kinetochore–microtubule dynamics. J. Cell Biol. 217, 163–177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aravamudhan, P., Chen, R., Roy, B., Sim, J. & Joglekar, A. P. Dual mechanisms regulate the recruitment of spindle assembly checkpoint proteins to the budding yeast kinetochore. Mol. Biol. Cell 27, 3405–3417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, C. et al. Ectopic activation of the spindle assembly checkpoint signaling cascade reveals its biochemical design. Curr. Biol. 29, 104–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, H. et al. Nuclear body phase separation drives telomere clustering in ALT cancer cells. Mol. Biol. Cell 31, 2048–2056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Douglass, E. F., Miller, C. J., Sparer, G., Shapiro, H. & Spiegel, D. A. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc. 135, 6092–6099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schreiber, S. L. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell 70, 365–368 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the FKBP–rapamycin–FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Gillingham, A. K. & Munro, S. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep. 1, 524–529 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Dudka for commenting on this article. This article was supported by the National Institutes of Health (GM-122475), National Cancer Institute (U54-CA193417), the Emerson Collective Cancer Research Fund and the Penn Center for Genome Integrity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Lampson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Andrew Holland, Jorge Torres and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GY., Lampson, M.A. Chemical tools for dissecting cell division. Nat Chem Biol 17, 632–640 (2021). https://doi.org/10.1038/s41589-021-00798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00798-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing