Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small molecule probes for targeting autophagy

Abstract

Autophagy is implicated in a wide range of (patho)physiological processes including maintenance of cellular homeostasis, neurodegenerative disorders, aging and cancer. As such, small molecule autophagy modulators are in great demand, both for their ability to act as tools to better understand this essential process and as potential therapeutics. Despite substantial advances in the field, major challenges remain in the development and comprehensive characterization of probes that are specific to autophagy. In this Review, we discuss recent developments in autophagy-modulating small molecules, including the specific challenges faced in the development of activators and inhibitors, and recommend guidelines for their use. Finally, we discuss the potential to hijack the process for targeted protein degradation, an area of great importance in chemical biology and drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the autophagy process.
Fig. 2: Small molecules inducing autophagy.
Fig. 3: Small molecule inhibitors of autophagy initiation.
Fig. 4: Small molecules inhibiting lysosomal activity.
Fig. 5: Targeted protein degradation using autophagosomes and lysosomes.

Similar content being viewed by others

References

  1. Wong, E. et al. Molecular determinants of selective clearance of protein inclusions by autophagy. Nat. Commun. 3, 1240 (2012).

    Article  PubMed  Google Scholar 

  2. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Pohl, C. & Dikic, I. Cellular quality control by the ubiquitin–proteasome system and autophagy. Science 366, 818–822 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Li, W. W., Li, J. & Bao, J. K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jung, C. H. et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaufmann, A., Beier, V., Franquelim, H. G. & Wollert, T. Molecular mechanism of autophagic membrane–scaffold assembly and disassembly. Cell 156, 469–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Galluzzi, L. & Green, D. R. Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Sharma, V. et al. Selective autophagy and xenophagy in infection and disease. Front. Cell Dev. Biol. 6, 147 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernández, Á. F. et al. Disruption of the beclin 1–BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558, 136–140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Perera, R. M. et al. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524, 361–382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020). This paper describes a new role for autophagy in sustaining pancreatic cancer by degrading MHC-I and promoting immune evasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cassidy, L. D. et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat. Commun. 11, 307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Workman, P. & Collins, I. Probing the probes: fitness factors for small molecule tools. Chem. Biol. 17, 561–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dong, Y. et al. Autophagy modulator scoring system: a user-friendly tool for quantitative analysis of methodological integrity of chemical autophagy modulator studies. Autophagy 16, 195–202 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Mizushima, N. & Murphy, L. O. Autophagy assays for biological discovery and therapeutic development. Trends Biochem. Sci. 45, 1080–1093 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Kaizuka, T. et al. An autophagic flux probe that releases an internal control. Mol. Cell 64, 835–849 (2016). This paper describes a probe that can reliably be used to identify modulators of autophagic flux.

    Article  CAS  PubMed  Google Scholar 

  28. Nanduri, R. et al. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy. Autophagy 15, 1280–1295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Blommaart, E. F. C., Luiken, J. J. F. P., Blommaart, P. J. E., Van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Q. et al. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J. Med. Chem. 53, 7146–7155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chresta, C. M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J. Exp. Clin. Cancer Res. 37, 63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D. C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282, 5641–5652 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol. 3, 331–338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuo, S.-Y. et al. Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. Proc. Natl Acad. Sci. USA 112, E4281–E4287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeBosch, B. J. et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci. Signal. 9, ra21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rusmini, P. et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 15, 631–651 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101–1111 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Siddiqi, F. H. et al. Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nat. Commun. 10, 1817 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chung, C. Y. S. et al. Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition. Nat. Chem. Biol. 15, 776–785 (2019). This paper describes a covalent modifier of the v-ATPase that induces autophagy.

    Article  CAS  PubMed  Google Scholar 

  43. Lim, C. Y. et al. ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burgett, A. W. G. et al. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat. Chem. Biol. 7, 639–647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosato, A. S. et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKK1B/VPS34 pathway. Nat. Commun. 10, 5630 (2019).

    Article  Google Scholar 

  46. Medina, D. L. et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17, 288–299 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen, C. et al. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat. Commun. 5, 4681 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Shen, D. et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3, 731 (2012).

    Article  PubMed  Google Scholar 

  49. Laraia, L., McKenzie, G., Spring, D. R., Venkitaraman, A. R. & Huggins, D. J. Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein–protein interactions. Chem. Biol. 22, 689–703 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiang, W. C. et al. High-throughput screens to identify autophagy inducers that function by disrupting beclin 1/Bcl-2 binding. ACS Chem. Biol. 13, 2247–2260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013). This paper describes the identification of a peptide inhibitor of a protein–protein interaction that leads to autophagy induction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Robke, L. et al. Discovery of the novel autophagy inhibitor aumitin that targets mitochondrial complex I. Chem. Sci. 9, 3014–3022 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bosc, C. et al. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria–endoplasmic reticulum contact sites. Nat. Commun. 11, 4056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rusilowicz-Jones, E. V. et al. USP30 sets a trigger threshold for PINK1–PARKIN amplification of mitochondrial ubiquitylation. Life Sci. Alliance 3, e202000768 (2020). This paper describes one of the first examples of a mitophagy-enhancing compound that does not disrupt the mitochondrial membrane potential.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heckmann, B. L., Yang, X., Zhang, X. & Liu, J. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br. J. Pharmacol. 168, 163–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sarkaria, J. N. et al. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 58, 4375–4382 (1998).

    CAS  PubMed  Google Scholar 

  59. Robke, L. et al. Phenotypic identification of a novel autophagy inhibitor chemotype targeting lipid kinase VPS34. Angew. Chem. Int. Ed. 56, 8153–8157 (2017).

    Article  CAS  Google Scholar 

  60. Foley, D. J. et al. Phenotyping reveals the targets of a pseudo-natural product autophagy inhibitor. Angew. Chem. Int. Ed. 59, 12470–12476 (2020).

    Article  CAS  Google Scholar 

  61. Ronan, B. et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10, 1013–1019 (2014). This paper describes the discovery of the most potent and selective VPS34 inhibitor to date.

    Article  CAS  PubMed  Google Scholar 

  62. Bago, R. et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem. J. 463, 413–427 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Noman, M. Z. et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pavlinov, I., Salkovski, M. & Aldrich, L. N. Beclin 1–ATG14L protein–protein interaction inhibitor selectively inhibits autophagy through disruption of VPS34 complex I. J. Am. Chem. Soc. 142, 8174–8182 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Petherick, K. J. et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem. 290, 11376–11383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Egan, D. F. et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285–297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martin, K. R. et al. A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient stress. iScience 8, 74–84 (2018). This paper describes the identification of the most potent and selective ULK1 inhibitor to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bosc, D. et al. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Sci. Rep. 8, 11653 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qiu, Z. et al. Discovery of fluoromethylketone-based peptidomimetics as covalent ATG4B (autophagin-1) inhibitors. ACS Med. Chem. Lett. 7, 802–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, S. C. et al. Discovery and optimization of pyrazolopyrimidine sulfamates as ATG7 inhibitors. Bioorg. Med. Chem. 28, 115681 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Laraia, L. et al. The cholesterol transfer protein GRAMD1A regulates autophagosome biogenesis. Nat. Chem. Biol. 15, 710–720 (2019). This paper describes a role for cholesterol transfer proteins in autophagosome biogenesis and provides tool compounds for inhibiting them.

    Article  CAS  PubMed  Google Scholar 

  72. Wijdeven, R. H. et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat. Commun. 7, 11808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511–524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Njomen, E. & Tepe, J. J. Regulation of autophagic flux by the 20S proteasome. Cell Chem. Biol. 26, 1283–1294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bowman, E. J., Sieberst, A. & Altendorft, K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl Acad. Sci. USA 85, 7972–7976 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huss, M. et al. Concanamycin A, the specific inhibitor of V-ATPases, binds to the Vo subunit c. J. Biol. Chem. 277, 40544–40548 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Xie, X. S. et al. Salicylihalamide A inhibits the Vo sector of the V-ATPase through a mechanism distinct from bafilomycin A1. J. Biol. Chem. 279, 19755–19763 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Boyd, M. R. et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type H+-ATPases. J. Pharmacol. Exp. Ther. 297, 114–120 (2001).

    CAS  PubMed  Google Scholar 

  79. Sørensen, M. G., Henriksen, K., Neutzsky-Wulff, A. V., Dziegiel, M. H. & Karsdal, M. A. Diphyllin, a novel and naturally potent v-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J. Bone Miner. Res. 22, 1640–1648 (2007).

    Article  PubMed  Google Scholar 

  80. Wang, Y. et al. Pharmacological targeting of vacuolar H+-ATPase via subunit V1G combats multidrug-resistant cancer. Cell Chem. Biol. 27, 1359–1370 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Aldrich, L. N. et al. Discovery of a small-molecule probe for v-ATPase function. J. Am. Chem. Soc. 137, 5563–5568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kapishnikov, S. et al. Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo. Proc. Natl Acad. Sci. USA 116, 22946–22952 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sumpter, M. D., Tatro, L. S., Stoecker, W. V. & Rader, R. K. Evidence for risk of cardiomyopathy with hydroxychloroquine. Lupus 21, 1594–1596 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosome–lysosome fusion. Autophagy 14, 1435–1455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ashoor, R., Yafawi, R., Jessen, B. & Lu, S. The contribution of lysosomotropism to autophagy perturbation. PLoS ONE 8, e82481 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kornhuber, J. et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure–property–activity relation model. J. Med. Chem. 51, 219–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Laraia, L. et al. Image-based morphological profiling identifies a lysosomotropic, iron-sequestering autophagy inhibitor. Angew. Chem. Int. Ed. 59, 5721–5729 (2020).

    Article  CAS  Google Scholar 

  88. Laraia, L. et al. Discovery of novel cinchona-alkaloid-inspired oxazatwistane autophagy inhibitors. Angew. Chem. Int. Ed. 56, 2177–2182 (2017).

    Article  Google Scholar 

  89. Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ito, C. et al. Endogenous nitrated nucleotide is a key mediator of autophagy and innate defense against bacteria. Mol. Cell 52, 794–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810 (2019). This paper describes the first example of targeting proteins to the autophagosome for degradation using small molecules.

    Article  CAS  PubMed  Google Scholar 

  93. Fan, X., Jin, W. Y., Lu, J., Wang, J. & Wang, Y. T. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat. Neurosci. 17, 471–480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bauer, P. O. et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat. Biotechnol. 28, 256–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, Y.-F. et al. The peptide-directed lysosomal degradation of CDK5 exerts therapeutic effects against stroke. Aging Dis. 10, 1140–1145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang, H. et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat. Chem. Biol. 15, 42–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Gary-Bobo, M., Nirdé, P., Jeanjean, A., Morère, A. & Garcia, M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr. Med. Chem. 14, 2945–2953 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu, Y. et al. Conjugation of mannose 6-phosphate-containing oligosaccharides to acid α-glucosidase improves the clearance of glycogen in Pompe mice. J. Biol. Chem. 279, 50336–50341 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020). This paper describes the first example of targeting extracellular proteins to the lysosome for degradation using designed molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Anguiano, J. et al. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat. Chem. Biol. 9, 374–382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Novo Nordisk Foundation, the Independent Research Fund Denmark, the Carlsberg Foundation and DTU for financial support to L.L. T.W.-E. acknowledges DTU for a PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Laraia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Sovan Sarkar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitmarsh-Everiss, T., Laraia, L. Small molecule probes for targeting autophagy. Nat Chem Biol 17, 653–664 (2021). https://doi.org/10.1038/s41589-021-00768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00768-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing