Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces

Abstract

The oxygen reduction reaction (ORR) is the key bottleneck in the performance of fuel cells. So far, the most active and stable electrocatalysts for the reaction are based on Pt group metals. Transition metal oxides (TMOs) constitute an alternative class of materials for achieving operational stability under oxidizing conditions. Unfortunately, TMOs are generally found to be less active than Pt. Here, we identify two reasons why it is difficult to find TMOs with a high ORR activity. The first is that TMO surfaces consistently bind oxygen atoms more weakly than transition metals do. This makes the breaking of the O–O bond rate-determining for the broad range of TMO surfaces investigated here. The second is that electric field effects are stronger at TMO surfaces, which further makes O–O bond breaking difficult. To validate the predictions and ascertain their generalizability for TMOs, we report experimental ORR catalyst screening for 7,798 unique TMO compositions that generally exhibit activity well below that of Pt.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the performance of TMO catalysts.
Fig. 2: Free-energy diagram for the four-electron (4e) ORR process on Pt, ZrO2 and HfO2(111).
Fig. 3: Linear scaling relations that determine the ORR activities.
Fig. 4: Kinetic volcano models for the 4e ORR process at 0.8 VRHE.
Fig. 5: Electric field effects and pH-dependent kinetic volcano models.

Similar content being viewed by others

Data availability

The experimental data are available at https://data.caltech.edu/records/1632 (https://doi.org/10.22002/D1.1632). The computational data, which include the O, HO and HOO binding energies, the free energies of 4e ORR, the optimized atomic coordinates and the scripts for structure modelling, are available at https://github.com/cattheory-oxides/data. All the data are available from the authors upon reasonable request.

References

  1. Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    CAS  PubMed  Google Scholar 

  2. Gasteiger, H. A. & Markovic, N. M. Just a dream or future reality? Science 324, 48–49 (2009).

    CAS  PubMed  Google Scholar 

  3. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    CAS  PubMed  Google Scholar 

  4. Marković, N. M., Schmidt, T. J., Stamenković, V. & Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1, 105–116 (2001).

    Google Scholar 

  5. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    CAS  PubMed  Google Scholar 

  6. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    CAS  PubMed  Google Scholar 

  7. Sakong, S. & Groß, A. Water structures on a Pt(111) electrode from ab initio molecular dynamic simulations for a variety of electrochemical conditions. Phys. Chem. Chem. Phys. 22, 10431–10437 (2020).

    CAS  PubMed  Google Scholar 

  8. Ota, K. I. et al. Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell. J. Power Sources 196, 5256–5263 (2011).

    CAS  Google Scholar 

  9. Stein, H. S. et al. Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space. Mater. Horiz. 6, 1251–1258 (2019).

    CAS  Google Scholar 

  10. Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 7, 682–688 (2014).

    CAS  Google Scholar 

  11. Wang, Y., Li, J. & Wei, Z. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 8194–8209 (2018).

    CAS  Google Scholar 

  12. Wang, Y. et al. Synergistic Mn–Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 10, 1506 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Dickens, C. F., Kirk, C. & Nørskov, J. K. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C. 123, 18960–18977 (2019).

    CAS  Google Scholar 

  14. Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014).

    CAS  Google Scholar 

  15. Kelly, S. R., Kirk, C., Chan, K. & Nørskov, J. K. Electric field effects in oxygen reduction kinetics: rationalizing pH dependence at the Pt(111), Au(111), and Au(100) electrodes. J. Phys. Chem. C 124, 14581–14591 (2020).

    CAS  Google Scholar 

  16. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  17. Wang, J. X., Markovic, N. M. & Adzic, R. R. Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 108, 4127–4133 (2004).

    CAS  Google Scholar 

  18. Dickens, C. F., Montoya, J. H., Kulkarni, A. R., Bajdich, M. & Nørskov, J. K. An electronic structure descriptor for oxygen reactivity at metal and metal–oxide surfaces. Surf. Sci. 681, 122–129 (2019).

    CAS  Google Scholar 

  19. Duan, Z. & Henkelman, G. Theoretical resolution of the exceptional oxygen reduction activity of Au(100) in alkaline media. ACS Catal. 9, 5567–5573 (2019).

    CAS  Google Scholar 

  20. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    CAS  Google Scholar 

  21. Lamoureux, P. S., Singh, A. R. & Chan, K. pH effects on hydrogen evolution and oxidation over Pt(111): insights from first-principles. ACS Catal. 9, 6194–6201 (2019).

    CAS  Google Scholar 

  22. Mittermeier, T., Madkikar, P., Wang, X., Gasteiger, H. A. & Piana, M. ZrO2 based oxygen reduction catalysts for PEMFCs: towards a better understanding. J. Electrochem. Soc. 163, F1543 (2016).

    CAS  Google Scholar 

  23. Jung, J. W., Kim, G. Y., Lee, N. W. & Ryu, W. H. Low-temperature synthesis of tetragonal phase of hafnium oxide using polymer-blended nanofiber precursor. Appl. Surf. Sci. 533, 147496 (2020).

    CAS  Google Scholar 

  24. Matsui, T. et al. Catalytic activities for oxygen reduction reaction of group 4 and 5 transition metal oxide-based compounds in alkaline solution. 220th ECS Meeting Abstracts 2011-02 293 (Electrochemical Society, 2011).

  25. Hu, S. Corrosion-Resistant Transition Metal Oxides and Oxynitrides Evaluated as Potential Non-Noble Metal Electrocatalysts for the Oxygen Reduction Reaction. PhD thesis, State Univ. of New York at Stony Brook (2015).

  26. Carneiro, J. F., Paulo, M. J., Siaj, M., Tavares, A. C. & Lanza, M. R. V. Zirconia on reduced graphene oxide Sheets: synergistic catalyst with high selectivity for H2O2 electrogeneration. ChemElectroChem 4, 508–513 (2017).

    CAS  Google Scholar 

  27. Carneiro, J. F., Paulo, M. J., Siaj, M., Tavares, A. C. & Lanza, M. R. V. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J. Catal. 332, 51–61 (2015).

    CAS  Google Scholar 

  28. Barros, W. R. P. et al. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and graphene. Electrochim. Acta 162, 263–270 (2015).

    CAS  Google Scholar 

  29. Wan, H., Jensen, A. W., Escudero-Escribano, M. & Rossmeisl, J. Insights in the oxygen reduction reaction: from metallic electrocatalysts to diporphyrins. ACS Catal. 10, 5979–5989 (2020).

    CAS  Google Scholar 

  30. Gregoire, J. M., Xiang, C., Liu, X., Marcin, M. & Jin, J. Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Rev. Sci. Instrum. 84, 024102 (2013).

    PubMed  Google Scholar 

  31. Jones, R. J. R. et al. Parallel electrochemical treatment system and application for identifying acid-stable oxygen evolution electrocatalysts. ACS Comb. Sci. 17, 71–75 (2015).

    CAS  PubMed  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  33. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).

    Google Scholar 

  34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  35. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  36. Ishihara, A., Shibata, Y., Mitsushima, S. & Ota, K. Partially oxidized tantalum carbonitrides as a new nonplatinum cathode for PEFC–1–. J. Electrochem. Soc. 155, B400–B406 (2008).

    CAS  Google Scholar 

  37. Nam, K. D., Ishihara, A., Matsuzawa, K., Mitsushima, S. & Ota, K. I. Partially oxidized niobium carbonitride as non-platinum cathode for PEFC. Electrochem. Solid-State Lett. 12, B158 (2009).

    CAS  Google Scholar 

  38. Takasu, Y., Oohori, K., Yoshinaga, N. & Sugimoto, W. An examination of the oxygen reduction reaction on RuO2-based oxide coatings formed on titanium substrates. Catal. Today 146, 248–252 (2009).

    CAS  Google Scholar 

  39. Liu, Y., Ishihara, A., Mitsushima, S. & Ota, K. Influence of sputtering power on oxygen reduction reaction activity of zirconium oxides prepared by radio frequency reactive sputtering. Electrochim. Acta 55, 1239–1244 (2010).

    CAS  Google Scholar 

  40. Takasu, Y., Suzuki, M., Yang, H., Ohashi, T. & Sugimoto, W. Oxygen reduction characteristics of several valve metal oxide electrodes in HClO4 solution. Electrochim. Acta 55, 8220–8229 (2010).

    CAS  Google Scholar 

  41. Seo, J., Cha, D., Takanabe, K., Kubota, J. & Domen, K. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media. Phys. Chem. Chem. Phys. 16, 895–898 (2014).

    CAS  PubMed  Google Scholar 

  42. Ishihara, A. et al. Synthesis of nano-TaOx oxygen reduction reaction catalysts on multi-walled carbon nanotubes connected via a decomposition of oxy-tantalum phthalocyanine. Phys. Chem. Chem. Phys. 17, 7643–7647 (2015).

    CAS  PubMed  Google Scholar 

  43. Tominaka, S., Ishihara, A., Nagai, T. & Ota, K. I. Noncrystalline titanium oxide catalysts for electrochemical oxygen reduction reactions. ACS Omega 2, 5209–5214 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chisaka, M. Creation of oxygen reduction reaction active sites on titanium oxynitride without increasing the nitrogen doping level. Phys. Chem. Chem. Phys. 20, 15613–15617 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Chorkendorff, Y. Zheng (Technical University of Denmark), T. F. Jaramillo (Stanford University) and J. H. Montoya (Toyota Research Institute) for all the helpful discussions. This work was supported by the Toyota Research Institute through the Accelerated Materials Design and Discovery program.

Author information

Authors and Affiliations

Authors

Contributions

H.L., S.K., J.M.G. and J.K.N. designed the study and wrote the paper. H.L., S.K., Z.W., M.A., G.T.K.K.G., C.S.A. and S.V. conducted the DFT calculations, data analysis, and microkinetic modelling. D.G., Y.W., J.A.H. and J.M.G. performed the high-throughput experiments.

Corresponding author

Correspondence to Jens K. Nørskov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Guofeng Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Methods, Figs. 1–8 and References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Kelly, S., Guevarra, D. et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat Catal 4, 463–468 (2021). https://doi.org/10.1038/s41929-021-00618-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00618-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing