Skip to main content

Advertisement

Log in

Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential

  • ORIGINAL ARTICLE
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Intrinsic oscillators in the central nervous system play a preeminent role in the neural control of rhythmic behaviors, yet little is known about how the ionic milieu regulates their output patterns. A powerful system to address this question is the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus. A neural network comprised of an average of 87 pacemaker cells and 20 relay cells produces tonic oscillations, with higher frequencies in males compared to females. Previous empirical studies have suggested that this sexual dimorphism develops and is maintained through modulation of buffering of extracellular K+ by a massive meshwork of astrocytes enveloping the pacemaker and relay cells. Here, we constructed a model of this neural network that can generate sustained spontaneous oscillations. Sensitivity analysis revealed the potassium equilibrium potential, EK (as a proxy of extracellular K+ concentration), and corresponding somatic channel conductances as critical determinants of oscillation frequency and amplitude. In models of both the pacemaker nucleus network and isolated pacemaker and relay cells, the frequency increased almost linearly with EK, whereas the amplitude decreased nonlinearly with increasing EK. Our simulations predict that this frequency increase is largely caused by a shift in the minimum K+ conductance over one oscillation period. This minimum is close to zero at more negative EK, converging to the corresponding maximum at less negative EK. This brings the resting membrane potential closer to the threshold potential at which voltage-gated Na+ channels become active, increasing the excitability, and thus the frequency, of pacemaker and relay cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Århem, P., Klement, G., & Blomberg, C. (2006). Channel density regulation of firing patterns in a cortical neuron model. Biophysical Journal, 90, 4392–4404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bachrathy, D., & Stépán, G. (2012). Bisection method in higher dimensions and the efficiency number. Periodica Polytechnica Mechanical Engineering, 56, 81–86.

    Article  Google Scholar 

  • Bastian, M., Heymann, S., Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media.

  • Baylor, D. A., & Nicholls, J. G. (1969). Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. Journal of Physiology, 203, 555–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot-Saez, A., Cohen, G., van Schaik, A., Ooi, L., Morley, J. W., & Buskila, Y. (2018). Astrocytic modulation of cortical oscillations. Scientific Reports, 8, 11565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellot-Saez, A., Kékesi, O., Morley, J. W., & Buskila, Y. (2017). Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neuroscience and Biobehavioral Reviews, 77, 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M. V. L. (1971). Electric organs. In Fish Physiology, Vol. 5: Sensory Systems and Electric Organs (eds. W. S. Hoar and D. J. Randall), pp. 347–491. New York: Academic Press.

  • Blackman, J. G., Ginsborg, B. L., & Ray, C. (1963). Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. Journal of Physiology, 167, 374–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocard, F., Shevtsova, N. A., Bouhadfane, M., Tazerart, S., Heinemann, U., Rybak, I. A., & Vinay, L. (2013). Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron, 77, 1047–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canepari, M., Bove, M., Maeda, E., Cappello, M., & Kawana, A. (1997). Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biological Cybernetics, 77, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Chever, O., Djukic, B., McCarthy, K. D., & Amzica, F. (2010). Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. Journal of Neuroscience, 30, 15769–15777.

    Article  CAS  PubMed  Google Scholar 

  • D’Ambrosio, R., Gordon, D. S., & Winn, H. R. (2002). Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. Journal of Neurophysiology, 87, 87–102.

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira-Castro, G. (1955). Differentiated nervous fibers that constitute the electric organ of Sternarchus albifrons, Linn. Anais da Academia Brasileira de Ciências, 27, 557–564.

    Google Scholar 

  • Deng, Q., Rashid, A. J., Fernandez, F. R., Turner, R. W., Maler, L., & Dunn, R. J. (2005). A C-terminal domain directs Kv3.3 channels to dendrites. Journal of Neuroscience, 25, 11531–11541.

    Article  CAS  PubMed  Google Scholar 

  • Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MATCOUNT: a Matlab package for numerical bifurcation analysis of ODEs. Transactions of Mathematical Software, 29, 141–164.

    Article  Google Scholar 

  • Dunlap, K. D., Thomas, P., & Zakon, H. H. (1998). Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. Journal of Comparative Physiology A, 183, 77–86.

    Article  CAS  Google Scholar 

  • Dye, J. (1991). Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. Journal of Comparative Physiology A, 168, 521–532.

    Article  CAS  Google Scholar 

  • Dye, J., & Heiligenberg, W. (1987). Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors. Journal of Comparative Physiology A, 161, 187–200.

    Article  CAS  Google Scholar 

  • Dye, J. C., & Meyer, J. H. (1986). Central control of the electric organ discharge in weakly electric fish. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception. (pp. 71–102). John Wiley.

    Google Scholar 

  • Elekes, K., & Szabo, T. (1985). Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Experimental Brain Research, 60, 509–520.

    Article  CAS  PubMed  Google Scholar 

  • Engler, G., & Zupanc, G. K. H. (2001). Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A, 187, 747–756.

    Article  CAS  Google Scholar 

  • Frankenhaeuser, B., & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibres of Loligo. Journal of Physiology, 131, 341–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fröhlich, F., Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2006). Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. Journal of Neuroscience, 26, 6153–6162.

    Article  PubMed  CAS  Google Scholar 

  • Giaume, C., Kado, R. T., & Korn, H. (1987). Voltage-clamp analysis of a crayfish rectifying synapse. Journal of Physiology, 386, 91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golbs, A., Nimmervoll, B., Sun, J.-J., Sava, I. E., & Luhmann, H. J. (2011). Control of programmed cell death by distinct electrical activity patterns. Cerebral Cortex, 21, 1192–1202

    Article  PubMed  Google Scholar 

  • Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21, 5229–5238.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, G. J., & Marder, E. (2013). Rectifying electrical synapses can affect the influence of synaptic modulation on output pattern robustness. Journal of Neuroscience, 33, 13238–13248.

    Article  CAS  PubMed  Google Scholar 

  • Hilgetag, C. C., & Barbas, H. (2009). Are there ten times more glia than neurons in the brain? Brain Structure and Function, 213, 365–366.

    Article  PubMed  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  CAS  PubMed  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.

    Article  CAS  PubMed  Google Scholar 

  • Hines, M. L., Davison, A. P., & Muller, E. (2009). NEURON and Python. Frontiers in Neuroinformatics, 3, 1.

    PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huddart, H. (1966). The effect of potassium ions on resting and action potentials in lepidopteran muscle. Comparative Biochemistry and Physiology, 18, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Juranek, J., & Metzner, W. (1998). Segregation of behavior-specific synaptic inputs to a vertebrate neuronal oscillator. Journal of Neuroscience, 18, 9010–9019.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, D. B. (1988). Sexually dimorphic behaviors. Annual Review of Neuroscience, 11, 225–251.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, R., Naito, K., & Tanaka, I. (1962). Effect of sodium and potassium ions on the electrical activity of single cells in the lateral eye of the horseshoe crab. Journal of Physiology, 161, 319–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschbaum, F. (1983). Myogenic electric organ precedes the neurogenic organ in apteronotid fish. Experientia, 70, 205–207.

    CAS  Google Scholar 

  • Kiyoshi, C. M., & Zhou, M. (2019). Astrocyte syncytium: a functional reticular system in the brain. Neural Regeneration Research, 14, 595–596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolodziejski, J. A., Nelson, B. S., & Smith, G. T. (2005). Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish. Journal of Neurobiology, 62, 299–315.

    Article  CAS  PubMed  Google Scholar 

  • Lai, H. C., & Jan, L. Y. (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nature Reviews Neuroscience, 7, 548–562.

    Article  CAS  PubMed  Google Scholar 

  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular Cell Biology. (4th ed.). W.H. Freeman.

    Google Scholar 

  • Lucas, K. M., Warrington, J., Lewis, T. J., & Lewis, J. E. (2019). Neuronal dynamics underlying communication signals in a weakly electric fish: implications for connectivity in a pacemaker network. Neuroscience, 401, 21–34.

    Article  CAS  PubMed  Google Scholar 

  • Lux, H. D., Heinemann, U., & Dietzel, I. (1986). Ionic changes and alterations in the size of the extracellular space during epileptic activity. Advances in Neurology, 44, 619–639.

    CAS  PubMed  Google Scholar 

  • Lux, H. D., & Neher, E. (1973). The equilibration time course of [K+]o in cat cortex. Experimental Brain Research, 17, 190–205.

    Article  CAS  PubMed  Google Scholar 

  • Ma, B., Buckalew, R., Du, Y., Kiyoshi, C. M., Alford, C. C., Wang, W., McTigue, D. M., Enyeart, J. J., Terman, D., & Zhou, M. (2016). Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia, 64, 214–226.

    Article  PubMed  Google Scholar 

  • Meyer, J. H., Leong, M., & Keller, C. H. (1987). Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus. Journal of Comparative Physiology A, 160, 385–394.

    Article  CAS  Google Scholar 

  • Moody, W. J., Futamachi, K. J., & Prince, D. A. (1974). Extracellular potassium activity during epileptogenesis. Experimental Neurology, 42, 248–263.

    Article  CAS  PubMed  Google Scholar 

  • Moortgat, K. T., Bullock, T. H., & Sejnowski, T. J. (2000a). Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences. Journal of Neurophysiology, 83, 971–983.

    Article  CAS  PubMed  Google Scholar 

  • Moortgat, K. T., Bullock, T. H., & Sejnowski, T. J. (2000b). Gap junction effects on precision and frequency of a model pacemaker network. Journal of Neurophysiology, 83, 984–997.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, G. E., Pérez-Pinzón, M., Dimberg, K., & Winberg, S. (1993). Brain sensitivity to anoxia in fish as reflected by changes in extracellular K+ activity. American Journal of Physiology, 264, R250–R253.

    CAS  PubMed  Google Scholar 

  • Petracca, M., Vancea, R. O., Fleysher, L., Jonkman, L. E., Oesingmann, N., & Inglese, M. (2016). Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain, 139, 795–806.

    Article  PubMed  Google Scholar 

  • Prince, D. A., Lux, H. D., & Neher, E. (1973). Measurement of extracellular potassium activity in cat cortex. Brain Research, 50, 489–495.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, R., Nicholas, E., Petersen, N. C., Dietz, A. G., Xu, Q., Sun, Q., & Nedergaard, M. (2019). Cortex-wide changes in extracellular potassium ions parallel brain state transitions in awake behaving mice. Cell Reports, 28, 1182–1194.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, R., O’Donnell, J., Ding, F., & Nedergaard, M. (2020). Interstitial ions: a key regulator of state-dependent neural activity? Progress in Neurobiology, 193, 101802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice, M. E., & Nicholson, C. (1988). Behavior of extracellular K+ and pH in skate (Raja erinacea) cerebellum. Brain Research, 461, 328–334.

    Article  CAS  PubMed  Google Scholar 

  • Ridley, B., Nagel, A. M., Bydder, M., Maarouf, A., Stellmann, J.-P., Gherib, S., et al. (2018). Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field 23Na MRI study. Scientific Reports, 8, 4357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaefer, J. E., & Zakon, H. H. (1996). Opposing actions of androgen and estrogen on in vitro firing frequency of neuronal oscillators in the electromotor system. Journal of Neuroscience, 16, 2860–2868.

    Article  CAS  PubMed  Google Scholar 

  • Shifman, A. R., Sun, Y., Benoit, C. M., & Lewis, J. E. (2020). Dynamics of a neuronal pacemaker in the weakly electric fish Apteronotus. Scientific Reports, 10, 16707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sîrbulescu, R. F., Ilieş, I., Meyer, A., & Zupanc, G. K. H. (2017). Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: a spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth. Developmental Neurobiology, 77, 1269–1307.

    Article  PubMed  CAS  Google Scholar 

  • Sîrbulescu, R. F., Ilieş, I., & Zupanc, G. K. H. (2014). Quantitative analysis reveals dominance of gliogenesis over neurogenesis in an adult brainstem oscillator. Developmental Neurobiology, 74, 934–952.

    Article  PubMed  Google Scholar 

  • Smith, G. T., Lu, Y., & Zakon, H. H. (2000). Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish. Journal of Comparative Neurology, 423, 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Somjen, G. G. (2004). Ions in the Brain: Normal Function, Seizures, and Stroke. Oxford University Press.

    Google Scholar 

  • Spong, K. E., & Robertson, R. M. (2013). Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS. Journal of Insect Physiology, 59, 1031–1040.

    Article  CAS  PubMed  Google Scholar 

  • Spray, D. C., Harris, A. L., & Bennett, M. V. L. (1981). Equilibrium properties of a voltage-dependent junctional conductance. Journal of General Physiology, 77, 77–93.

    Article  CAS  PubMed  Google Scholar 

  • Stemmler, M., & Koch, C. (1999). How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nature Neuroscience, 2, 521–527.

    Article  CAS  PubMed  Google Scholar 

  • Syková, E., & Nicholson, C. (2008). Diffusion in brain extracellular space. Physiological Reviews, 88, 1277–1340.

    Article  PubMed  Google Scholar 

  • Syková, E., Rothenberg, S., & Krekule, I. (1974). Changes of extracellular potassium concentration during spontaneous activity in the mesencephalic reticular formation of the rat. Brain Research, 79, 333–337.

    Article  PubMed  Google Scholar 

  • Thulborn, K. R., Davis, D., Adams, H., Gindin, T., & Zhou, J. (1999). Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging. Magnetic Resonance in Medicine, 41, 351–359.

    Article  CAS  PubMed  Google Scholar 

  • Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., et al. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nature Neuroscience, 17, 694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimmer, J. S., & Rhodes, K. J. (2004). Localization of voltage-gated ion channels in mammalian brain. Annual Review of Physiology, 66, 477–519.

    Article  CAS  PubMed  Google Scholar 

  • Turner, R. W., & Moroz, L. L. (1995). Localization of nicotinamide adenine dinucleotide phosphate-diaphorase activity in electrosensory and electromotor systems of a gymnotiform teleost, Apteronotus leptorhynchus. Journal of Comparative Neurology, 356, 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky, A., & Nedergaard, M. (2018). Physiology of astroglia. Physiological Reviews, 98, 239–389.

    Article  CAS  PubMed  Google Scholar 

  • von Bartheld, C. S., Bahney, J., & Herculano-Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. Journal of Comparative Neurology, 524, 3865–3895.

    Article  Google Scholar 

  • Walz, W. (2000). Role of astrocytes in the clearance of excess extracellular potassium. Neurochemistry International, 36, 291–300.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Smith, N. A., Xu, Q., Fujita, T., Baba, A., Matsuda, T., Takano, T., Bekar, L., Nedergaard, M. (2012). Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Science Signaling, 5, ra26.

  • Waxman, S. G., Pappas, G. D., & Bennett, M. V. L. (1972). Morphological correlates of functional differentiation of nodes of Ranvier along single fibers in the neurogenic electric organ of the knife fish Sternarchus. Journal of Cell Biology, 53, 210–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342, 373–377.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, T., Maler, L., Hertzberg, E. L., & Nagy, J. I. (1989). Gap junction protein in weakly electric fish (Gymnotide [sic]): immunohistochemical localization with emphasis on structures of the electrosensory system. Journal of Comparative Neurology, 289, 509–536.

    Article  CAS  PubMed  Google Scholar 

  • Zeberg, H., Robinson, H. P., & Århem, P. (2015). Density of voltage-gated potassium channels is a bifurcation parameter in pyramidal neurons. Journal of Neurophysiology, 113, 537–549.

    Article  PubMed  Google Scholar 

  • Zupanc, G. K. H. (2017). Dynamic neuron-glia interactions in an oscillatory network controlling behavioral plasticity in the weakly electric fish. Apteronotus leptorhynchus. Frontiers in Physiology, 8, 1087.

    Article  PubMed  Google Scholar 

  • Zupanc, G. K. H. (2020). Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: the role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus. Developmental Neurobiology, 80, 6–15.

    Article  CAS  PubMed  Google Scholar 

  • Zupanc, G. K. H., Amaro, S. M., Lehotzky, D., Zupanc, F. B., & Leung, N. Y. (2019). Glia-mediated modulation of extracellular potassium concentration determines the sexually dimorphic output frequency of a model brainstem oscillator. Journal of Theoretical Biology, 471, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Zupanc, G. K. H., Banks, J. R., Engler, G., & Beason, R. C. (2003). Temperature dependence of the electric organ discharge in weakly electric fish. In B. J. Ploger & K. Yasukawa (Eds.), Exploring Animal Behavior in Laboratory and Field: An Hypothesis-testing Approach to the Development, Causation, Function, and Evolution of Animal Behavior. (pp. 85–94). Academic Press.

    Chapter  Google Scholar 

  • Zupanc, G. K. H., Ilieş, I., Sîrbulescu, R. F., & Zupanc, M. M. (2014). Large-scale identification of proteins involved in the development of a sexually dimorphic behavior. Journal of Neurophysiology, 111, 1646–1654.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Masashi Kawasaki (University of Virginia, Charlottesville) for fruitful discussion, as well as the two anonymous reviewers for their helpful comments on the manuscript. This research was supported by Grant 1946910 and Research Experiences for Undergraduates Supplement to Grant 1538505, both from the National Science Foundation (GKHZ); an Advanced Research/Creative Endeavor Award, a PEAK Experiences Trailblazer Award, and a Dr. Andrew I. Schafer Researcher Co-op Scholarship, all from Northeastern University (DH); and a Hungarian State Eötvös Scholarship from the Tempus Public Foundation (DL). We would also like to acknowledge the generous computational and technical support provided by the Northeastern University Discovery Cluster and ITS Research Computing Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther K. H. Zupanc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Action Editor: Catherine E Carr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartman, D., Lehotzky, D., Ilieş, I. et al. Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential. J Comput Neurosci 49, 419–439 (2021). https://doi.org/10.1007/s10827-021-00789-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-021-00789-2

Keywords

Navigation