Skip to main content

Advertisement

Log in

Posttranslational Modifications: Emerging Prospects for Cardiac Regeneration Therapy

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure (HF) following ischemic heart disease (IHD) remains a hard nut to crack and a leading cause of death worldwide. Cardiac regeneration aims to promote cardiomyocyte (CM) proliferation by transitioning the cell cycle state of CMs from arrest to re-entry. Protein posttranslational modifications (PTMs) have recently attracted extensive attention in the field of cardiac regeneration due to their reversibility and effects on the stability, activity, and subcellular localization of target proteins. The balance of PTMs is disrupted when neonatal CMs withdraw from the cell cycle, resulting in significant dysfunction of downstream substrate protein localization, expression, and activity, ultimately limiting the maintenance of cardiac regeneration ability. In this review, we summarize recent research concerning the role of PTMs in cardiac regeneration, while focusing on phosphorylation, acetylation, ubiquitination, glycosylation, methylation, and neddylation, and the effects of these modifications on CM proliferation, which may provide potential targets for future treatments for IHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2.

Similar content being viewed by others

References

  1. Al’Aref, S. J., Anchouche, K., Singh, G., Slomka, P. J., Kolli, K. K., Kumar, A., et al. (2019). Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. European Heart Journal, 40(24), 1975–1986. https://doi.org/10.1093/eurheartj/ehy404.

    Article  CAS  PubMed  Google Scholar 

  2. Cahill, T. J., Choudhury, R. P., & Riley, P. R. (2017). Heart regeneration and repair after myocardial infarction: Translational opportunities for novel therapeutics. Nature Reviews. Drug Discovery, 16(10), 699–717. https://doi.org/10.1038/nrd.2017.106.

    Article  CAS  PubMed  Google Scholar 

  3. Marquis-Gravel, G., Moliterno, D. J., Francis, D. P., Juni, P., Rosenberg, Y. D., Claessen, B. E., et al. (2020). Improving the design of future PCI trials for stable coronary artery disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76(4), 435–450. https://doi.org/10.1016/j.jacc.2020.05.060.

    Article  PubMed  Google Scholar 

  4. Du, C., Fan, Y., Li, Y. F., Wei, T. W., & Wang, L. S. (2020). Research progress on myocardial regeneration: What is new? Chinese Medical Journal, (6), 716–723. https://doi.org/10.1097/CM9.0000000000000693.

  5. Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews. Cardiology, 15(10), 585–600. https://doi.org/10.1038/s41569-018-0036-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080. https://doi.org/10.1126/science.1200708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohamed, T. M. A., Ang, Y. S., Radzinsky, E., Zhou, P., Huang, Y., Elfenbein, A., et al. (2018). Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell, 173(1), 104–116 e112. https://doi.org/10.1016/j.cell.2018.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, Y., Li, X., Li, B., Wang, H., Li, M., Huang, S., et al. (2019). Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Molecular Therapy, 27(1), 29–45. https://doi.org/10.1016/j.ymthe.2018.10.021.

    Article  CAS  PubMed  Google Scholar 

  9. Perrotta, F., Perna, A., Komici, K., Nigro, E., Mollica, M., D'Agnano, V., et al. (2020). The State of art of regenerative therapy in cardiovascular ischemic disease: Biology, signaling pathways, and epigenetics of endothelial progenitor cells. Cells, 9(8). https://doi.org/10.3390/cells9081886.

  10. Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12), 1543–1553. https://doi.org/10.1161/01.RES.0000130526.20854.fa.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, L., Liu, S., & Tao, Y. (2020). Regulating tumor suppressor genes: Post-translational modifications. Signal Transduction and Targeted Therapy, 5(1), 90. https://doi.org/10.1038/s41392-020-0196-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh, M., Bacolla, A., Chaudhary, S., Hunt, C. R., Pandita, S., Chauhan, R., et al. (2020). Histone acetyltransferase MOF orchestrates outcomes at the crossroad of oncogenesis, dna damage response, proliferation, and stem cell development. Molecular and Cellular Biology, 40(18). https://doi.org/10.1128/MCB.00232-20.

  13. Chen, X., Li, Y., Luo, J., & Hou, N. (2020). Molecular Mechanism of Hippo-YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Frontiers in Physiology, 11, 389. https://doi.org/10.3389/fphys.2020.00389.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chang, C. W., Dalgliesh, A. J., Lopez, J. E., & Griffiths, L. G. (2016). Cardiac extracellular matrix proteomics: Challenges, techniques, and clinical implications. Proteomics. Clinical Applications, 10(1), 39–50. https://doi.org/10.1002/prca.201500030.

    Article  CAS  PubMed  Google Scholar 

  15. Fan, Y., Cheng, Y., Li, Y., Chen, B., Wang, Z., Wei, T., et al. (2020). Phosphoproteomic analysis of neonatal regenerative myocardium revealed important roles of checkpoint kinase 1 via activating mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway. Circulation, 141(19), 1554–1569. https://doi.org/10.1161/CIRCULATIONAHA.119.040747.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J., Zhang, X., Huang, H., & Ding, Y. (2020). A review on kinases phosphorylating the carboxyl-terminal domain of RNA polymerase II-biological functions and inhibitors. Bioorganic Chemistry, 104, 104318. https://doi.org/10.1016/j.bioorg.2020.104318.

    Article  CAS  PubMed  Google Scholar 

  17. Czuba, L. C., Hillgren, K. M., & Swaan, P. W. (2018). Post-translational modifications of transporters. Pharmacology & Therapeutics, 192, 88–99. https://doi.org/10.1016/j.pharmthera.2018.06.013.

    Article  CAS  Google Scholar 

  18. Nishioka, T., Shohag, M. H., Amano, M., & Kaibuchi, K. (2015). Developing novel methods to search for substrates of protein kinases such as Rho-kinase. Biochimica et Biophysica Acta, 1854(10 Pt B), 1663–1666. https://doi.org/10.1016/j.bbapap.2015.03.001.

    Article  CAS  PubMed  Google Scholar 

  19. Shah, K., & Kim, H. (2019). The significant others: Global search for direct kinase substrates using chemical approaches. IUBMB Life, 71(6), 721–737. https://doi.org/10.1002/iub.2023.

    Article  CAS  PubMed  Google Scholar 

  20. Gao, J., Shao, K., Chen, X., Li, Z., Liu, Z., Yu, Z., et al. (2020). The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. Journal of Molecular and Cellular Cardiology, 138, 49–58. https://doi.org/10.1016/j.yjmcc.2019.11.146.

    Article  CAS  PubMed  Google Scholar 

  21. D'Uva, G., Aharonov, A., Lauriola, M., Kain, D., Yahalom-Ronen, Y., Carvalho, S., et al. (2015). ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nature Cell Biology, 17(5), 627–638. https://doi.org/10.1038/ncb3149.

    Article  CAS  PubMed  Google Scholar 

  22. Aharonov, A., Shakked, A., Umansky, K. B., Savidor, A., Genzelinakh, A., Kain, D., et al. (2020). ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nature Cell Biology, 22(11), 1346–1356. https://doi.org/10.1038/s41556-020-00588-4.

    Article  CAS  PubMed  Google Scholar 

  23. Fang, Y., Gupta, V., Karra, R., Holdway, J. E., Kikuchi, K., & Poss, K. D. (2013). Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13416–13421. https://doi.org/10.1073/pnas.1309810110.

    Article  PubMed  PubMed Central  Google Scholar 

  24. O'Meara, C. C., Wamstad, J. A., Gladstone, R. A., Fomovsky, G. M., Butty, V. L., Shrikumar, A., et al. (2015). Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circulation Research, 116(5), 804–815. https://doi.org/10.1161/CIRCRESAHA.116.304269.

    Article  CAS  PubMed  Google Scholar 

  25. Wodsedalek, D. J., Paddock, S. J., Wan, T. C., Auchampach, J. A., Kenarsary, A., Tsaih, S. W., et al. (2019). IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. American Journal of Physiology. Heart and Circulatory Physiology, 316(1), H24–H34. https://doi.org/10.1152/ajpheart.00521.2018.

    Article  CAS  PubMed  Google Scholar 

  26. Matrone, G., Wilson, K. S., Maqsood, S., Mullins, J. J., Tucker, C. S., & Denvir, M. A. (2015). CDK9 and its repressor LARP7 modulate cardiomyocyte proliferation and response to injury in the zebrafish heart. Journal of Cell Science, 128(24), 4560–4571. https://doi.org/10.1242/jcs.175018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beigi, F., Schmeckpeper, J., Pow-Anpongkul, P., Payne, J. A., Zhang, L., Zhang, Z., et al. (2013). C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circulation Research, 113(4), 372–380. https://doi.org/10.1161/CIRCRESAHA.113.301075.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Z., Zhou, P., von Gise, A., Gu, F., Ma, Q., Chen, J., et al. (2015). Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circulation Research, 116(1), 35–45. https://doi.org/10.1161/CIRCRESAHA.115.304457.

    Article  CAS  PubMed  Google Scholar 

  29. Xiang, F. L., Guo, M., & Yutzey, K. E. (2016). Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation, 133(11), 1081–1092. https://doi.org/10.1161/CIRCULATIONAHA.115.019357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei, L., Zhou, Q., Tian, H., Su, Y., Fu, G. H., & Sun, T. (2020). Integrin beta3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. International Journal of Biological Sciences, 16(4), 644–654. https://doi.org/10.7150/ijbs.39414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sciarretta, S., Forte, M., Frati, G., & Sadoshima, J. (2018). New insights into the role of mTOR signaling in the cardiovascular system. Circulation Research, 122(3), 489–505. https://doi.org/10.1161/CIRCRESAHA.117.311147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woulfe, K. C., Gao, E., Lal, H., Harris, D., Fan, Q., Vagnozzi, R., et al. (2010). Glycogen synthase kinase-3beta regulates post-myocardial infarction remodeling and stress-induced cardiomyocyte proliferation in vivo. Circulation Research, 106(10), 1635–1645. https://doi.org/10.1161/CIRCRESAHA.109.211482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Z., Xie, J., Hao, H., Lin, H., Wang, L., Zhang, Y., et al. (2017). Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3beta/cyclin D1 signalling pathway. Cardiovascular Research, 113(6), 620–632. https://doi.org/10.1093/cvr/cvx001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, J., Liu, S., Heallen, T., & Martin, J. F. (2018). The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nature Reviews. Cardiology, 15(11), 672–684. https://doi.org/10.1038/s41569-018-0063-3.

    Article  CAS  PubMed  Google Scholar 

  35. Xin, M., Kim, Y., Sutherland, L. B., Murakami, M., Qi, X., McAnally, J., et al. (2013). Hippo pathway effector Yap promotes cardiac regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13839–13844. https://doi.org/10.1073/pnas.1313192110.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lin, Z., Guo, H., Cao, Y., Zohrabian, S., Zhou, P., Ma, Q., et al. (2016). Acetylation of VGLL4 regulates Hippo-YAP signaling and postnatal cardiac growth. Developmental Cell, 39(4), 466–479. https://doi.org/10.1016/j.devcel.2016.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19(10), 1175–1187. https://doi.org/10.1101/gad.1306705.

    Article  CAS  Google Scholar 

  38. Newby, L. K., Marber, M. S., Melloni, C., Sarov-Blat, L., Aberle, L. H., Aylward, P. E., et al. (2014). Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet, 384(9949), 1187–1195. https://doi.org/10.1016/S0140-6736(14)60417-7.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., et al. (2019). Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 139(25), 2857–2876. https://doi.org/10.1161/CIRCULATIONAHA.118.038361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moya, I. M., & Halder, G. (2016). The Hippo pathway in cellular reprogramming and regeneration of different organs. Current Opinion in Cell Biology, 43, 62–68. https://doi.org/10.1016/j.ceb.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  41. Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R. L., et al. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science, 332(6028), 458–461. https://doi.org/10.1126/science.1199010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morikawa, Y., Heallen, T., Leach, J., Xiao, Y., & Martin, J. F. (2017). Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature, 547(7662), 227–231. https://doi.org/10.1038/nature22979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakamura, M., Zhai, P., Del Re, D. P., Maejima, Y., & Sadoshima, J. (2016). Mst1-mediated phosphorylation of Bcl-xL is required for myocardial reperfusion injury. JCI Insight, 1(5). https://doi.org/10.1172/jci.insight.86217.

  44. Deng, S., & Marmorstein, R. (2020). Protein N-Terminal acetylation: Structural basis, mechanism, versatility, and regulation. Trends in Biochemical Sciences. https://doi.org/10.1016/j.tibs.2020.08.005.

  45. Gong, F., & Miller, K. M. (2013). Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutation Research, 750(1-2), 23–30. https://doi.org/10.1016/j.mrfmmm.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  46. Shen, Y., Wei, W., & Zhou, D. X. (2015). Histone acetylation enzymes coordinate metabolism and gene expression. Trends in Plant Science, 20(10), 614–621. https://doi.org/10.1016/j.tplants.2015.07.005.

    Article  CAS  PubMed  Google Scholar 

  47. Saha, R. N., & Pahan, K. (2006). HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death and Differentiation, 13(4), 539–550. https://doi.org/10.1038/sj.cdd.4401769.

    Article  CAS  PubMed  Google Scholar 

  48. Yu, W., Ma, X., Xu, J., Heumuller, A. W., Fei, Z., Feng, X., et al. (2019). VGLL4 plays a critical role in heart valve development and homeostasis. PLoS Genetics, 15(2), e1007977. https://doi.org/10.1371/journal.pgen.1007977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koontz, L. M., Liu-Chittenden, Y., Yin, F., Zheng, Y., Yu, J., Huang, B., et al. (2013). The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Developmental Cell, 25(4), 388–401. https://doi.org/10.1016/j.devcel.2013.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de la Pompa, J. L., & Epstein, J. A. (2012). Coordinating tissue interactions: Notch signaling in cardiac development and disease. Developmental Cell, 22(2), 244–254. https://doi.org/10.1016/j.devcel.2012.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. MacGrogan, D., Munch, J., & de la Pompa, J. L. (2018). Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nature Reviews. Cardiology, 15(11), 685–704. https://doi.org/10.1038/s41569-018-0100-2.

    Article  PubMed  Google Scholar 

  52. Campa, V. M., Gutierrez-Lanza, R., Cerignoli, F., Diaz-Trelles, R., Nelson, B., Tsuji, T., et al. (2008). Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. The Journal of Cell Biology, 183(1), 129–141. https://doi.org/10.1083/jcb.200806104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oie, E., Sandberg, W. J., Ahmed, M. S., Yndestad, A., Laerum, O. D., Attramadal, H., et al. (2010). Activation of Notch signaling in cardiomyocytes during post-infarction remodeling. Scandinavian Cardiovascular Journal, 44(6), 359–366. https://doi.org/10.3109/14017431.2010.511256.

    Article  CAS  PubMed  Google Scholar 

  54. Collesi, C., Felician, G., Secco, I., Gutierrez, M. I., Martelletti, E., Ali, H., et al. (2018). Reversible Notch1 acetylation tunes proliferative signalling in cardiomyocytes. Cardiovascular Research, 114(1), 103–122. https://doi.org/10.1093/cvr/cvx228.

    Article  CAS  PubMed  Google Scholar 

  55. Si, X., Zheng, H., Wei, G., Li, M., Li, W., Wang, H., et al. (2020). circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Molecular Therapy--Nucleic Acids, 21, 636–655. https://doi.org/10.1016/j.omtn.2020.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Collesi, C., Zentilin, L., Sinagra, G., & Giacca, M. (2008). Notch1 signaling stimulates proliferation of immature cardiomyocytes. The Journal of Cell Biology, 183(1), 117–128. https://doi.org/10.1083/jcb.200806091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Solomon, J. M., Pasupuleti, R., Xu, L., McDonagh, T., Curtis, R., DiStefano, P. S., et al. (2006). Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Molecular and Cellular Biology, 26(1), 28–38. https://doi.org/10.1128/MCB.26.1.28-38.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews. Genetics, 10(1), 32–42. https://doi.org/10.1038/nrg2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trivedi, C. M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T., et al. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nature Medicine, 13(3), 324–331. https://doi.org/10.1038/nm1552.

    Article  PubMed  Google Scholar 

  60. Kook, H., & Epstein, J. A. (2003). Hopping to the beat. Hop regulation of cardiac gene expression. Trends in Cardiovascular Medicine, 13(7), 261–264. https://doi.org/10.1016/s1050-1738(03)00107-5.

    Article  CAS  PubMed  Google Scholar 

  61. Muhlfriedel, S., Kirsch, F., Gruss, P., Stoykova, A., & Chowdhury, K. (2005). A roof plate-dependent enhancer controls the expression of Homeodomain only protein in the developing cerebral cortex. Developmental Biology, 283(2), 522–534. https://doi.org/10.1016/j.ydbio.2005.04.033.

    Article  CAS  PubMed  Google Scholar 

  62. Trivedi, C. M., Zhu, W., Wang, Q., Jia, C., Kee, H. J., Li, L., et al. (2010). Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Developmental Cell, 19(3), 450–459. https://doi.org/10.1016/j.devcel.2010.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Palacios, J. A., Herranz, D., De Bonis, M. L., Velasco, S., Serrano, M., & Blasco, M. A. (2010). SIRT1 contributes to telomere maintenance and augments global homologous recombination. The Journal of Cell Biology, 191(7), 1299–1313. https://doi.org/10.1083/jcb.201005160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, Y., Zhou, L., Liu, H., Duan, R., Zhou, H., Zhang, F., et al. (2020). LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration. Cell Research. https://doi.org/10.1038/s41422-020-00411-7.

  65. Li, B., Li, M., Li, X., Li, H., Lai, Y., Huang, S., et al. (2019). Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY), 11(24), 12546–12567. https://doi.org/10.18632/aging.102587.

    Article  CAS  Google Scholar 

  66. Willis, M. S., Townley-Tilson, W. H., Kang, E. Y., Homeister, J. W., & Patterson, C. (2010). Sent to destroy: The ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circulation Research, 106(3), 463–478. https://doi.org/10.1161/CIRCRESAHA.109.208801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hedhli, N., & Depre, C. (2010). Proteasome inhibitors and cardiac cell growth. Cardiovascular Research, 85(2), 321–329. https://doi.org/10.1093/cvr/cvp226.

    Article  CAS  PubMed  Google Scholar 

  68. Hosseini, S. M., Okoye, I., Chaleshtari, M. G., Hazhirkarzar, B., Mohamadnejad, J., Azizi, G., et al. (2019). E2 ubiquitin-conjugating enzymes in cancer: Implications for immunotherapeutic interventions. Clinica Chimica Acta, 498, 126–134. https://doi.org/10.1016/j.cca.2019.08.020.

    Article  CAS  Google Scholar 

  69. Liu, L., Wong, C. C., Gong, B., & Yu, J. (2018). Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene, 37(2), 148–159. https://doi.org/10.1038/onc.2017.313.

    Article  CAS  PubMed  Google Scholar 

  70. Dang, F., Nie, L., & Wei, W. (2020). Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death and Differentiation. https://doi.org/10.1038/s41418-020-00648-0.

  71. Tamamori-Adachi, M., Hayashida, K., Nobori, K., Omizu, C., Yamada, K., Sakamoto, N., et al. (2004). Down-regulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. Evidence for impaired Skp2-dependent degradation of p27 in terminal differentiation. The Journal of Biological Chemistry, 279(48), 50429–50436. https://doi.org/10.1074/jbc.M403084200.

    Article  CAS  PubMed  Google Scholar 

  72. Zou, J., Ma, W., Li, J., Littlejohn, R., Zhou, H., Kim, I. M., et al. (2018). Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proceedings of the National Academy of Sciences of the United States of America, 115(17), E4101–E4110. https://doi.org/10.1073/pnas.1719309115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Torrini, C., Cubero, R. J., Dirkx, E., Braga, L., Ali, H., Prosdocimo, G., et al. (2019). Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Reports, 27(9), 2759–2771 e2755. https://doi.org/10.1016/j.celrep.2019.05.005.

    Article  CAS  PubMed  Google Scholar 

  74. Dong, W., Xie, F., Chen, X. Y., Huang, W. L., Zhang, Y. Z., Luo, W. B., et al. (2019). Inhibition of Smurf2 translation by miR-322/503 protects from ischemia-reperfusion injury by modulating EZH2/Akt/GSK3beta signaling. American Journal of Physiology. Cell Physiology, 317(2), C253–C261. https://doi.org/10.1152/ajpcell.00375.2018.

    Article  CAS  PubMed  Google Scholar 

  75. Ghosh, R., Vinod, V., Symons, J. D., & Boudina, S. (2020). Protein and mitochondria quality control mechanisms and cardiac aging. Cells, 9(4). https://doi.org/10.3390/cells9040933.

  76. Thomas, D. R., & Scott, N. E. (2020). Glycoproteomics: Growing up fast. Current Opinion in Structural Biology, 68, 18–25. https://doi.org/10.1016/j.sbi.2020.10.028.

    Article  CAS  PubMed  Google Scholar 

  77. Peanne, R., de Lonlay, P., Foulquier, F., Kornak, U., Lefeber, D. J., Morava, E., et al. (2018). Congenital disorders of glycosylation (CDG): Quo vadis? European Journal of Medical Genetics, 61(11), 643–663. https://doi.org/10.1016/j.ejmg.2017.10.012.

    Article  PubMed  Google Scholar 

  78. Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., et al. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y. S., Lebeche, D., Arab, S., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Medicine, 13(8), 962–969. https://doi.org/10.1038/nm1619.

    Article  CAS  PubMed  Google Scholar 

  80. Magadum, A., Singh, N., Kurian, A. A., Sharkar, M. T. K., Chepurko, E., & Zangi, L. (2018). Ablation of a single N-glycosylation site in human FSTL 1 induces cardiomyocyte proliferation and cardiac regeneration. Molecular Therapy--Nucleic Acids, 13, 133–143. https://doi.org/10.1016/j.omtn.2018.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Contessotto, P., Ellis, B. W., Jin, C., Karlsson, N. G., Zorlutuna, P., Kilcoyne, M., et al. (2020). Distinct glycosylation in membrane proteins within neonatal versus adult myocardial tissue. Matrix Biology, 85-86, 173–188. https://doi.org/10.1016/j.matbio.2019.05.001.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, J., & Wang, G. G. (2020). No easy way out for EZH2: Its pleiotropic, noncanonical effects on gene regulation and cellular function. International Journal of Molecular Sciences, 21(24). https://doi.org/10.3390/ijms21249501.

  83. Chen, Y., Ren, B., Yang, J., Wang, H., Yang, G., Xu, R., et al. (2020). The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduction and Targeted Therapy, 5(1), 143. https://doi.org/10.1038/s41392-020-00252-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ben-Yair, R., Butty, V. L., Busby, M., Qiu, Y., Levine, S. S., Goren, A., et al. (2019). H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development, 146(19). https://doi.org/10.1242/dev.178632.

  85. Meng, T. G., Zhou, Q., Ma, X. S., Liu, X. Y., Meng, Q. R., Huang, X. J., et al. (2020). PRC2 and EHMT1 regulate H3K27me2 and H3K27me3 establishment across the zygote genome. Nature Communications, 11(1), 6354. https://doi.org/10.1038/s41467-020-20242-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ai, S., Yu, X., Li, Y., Peng, Y., Li, C., Yue, Y., et al. (2017). Divergent requirements for EZH1 in heart development versus regeneration. Circulation Research, 121(2), 106–112. https://doi.org/10.1161/CIRCRESAHA.117.311212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Paige, S. L., Thomas, S., Stoick-Cooper, C. L., Wang, H., Maves, L., Sandstrom, R., et al. (2012). A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell, 151(1), 221–232. https://doi.org/10.1016/j.cell.2012.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao, W., Liu, L., Pan, B., Xu, Y., Zhu, J., Nan, C., et al. (2015). Epigenetic regulation of cardiac myofibril gene expression during heart development. Cardiovascular Toxicology, 15(3), 203–209. https://doi.org/10.1007/s12012-014-9278-7.

    Article  CAS  PubMed  Google Scholar 

  89. Stein, A. B., Jones, T. A., Herron, T. J., Patel, S. R., Day, S. M., Noujaim, S. F., et al. (2011). Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. The Journal of Clinical Investigation, 121(7), 2641–2650. https://doi.org/10.1172/JCI44641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kamitani, T., Kito, K., Fukuda-Kamitani, T., & Yeh, E. T. (2001). Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. The Journal of Biological Chemistry, 276(49), 46655–46660. https://doi.org/10.1074/jbc.M108636200.

    Article  CAS  PubMed  Google Scholar 

  91. Sarikas, A., Hartmann, T., & Pan, Z. Q. (2011). The cullin protein family. Genome Biology, 12(4), 220. https://doi.org/10.1186/gb-2011-12-4-220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kook, H., Seo, S. B., & Jain, R. (2017). EZ Switch From EZH2 to EZH1: Histone methylation opens a window of cardiac regeneration. Circulation Research, 121(2), 91–94. https://doi.org/10.1161/CIRCRESAHA.117.311351.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81770361 and No. 82070367) and the Project Funded by the Scientific Research Innovation Projects of Graduate Students in Jiangsu Province (No. KYCX19_1156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Sheng Wang.

Ethics declarations

Ethics approval

This article does not contain any studies involving human participants and/or animals conducted by any of the authors.

Informed consent

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YF., Wang, YX., Wang, H. et al. Posttranslational Modifications: Emerging Prospects for Cardiac Regeneration Therapy. J. of Cardiovasc. Trans. Res. 15, 49–60 (2022). https://doi.org/10.1007/s12265-021-10135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10135-7

Keywords

Navigation