Skip to main content
Log in

Ionic Liquids Grafted Mesoporous Silica for Chemical Fixation of CO2 to Cyclic Carbonate: Morphology Effect

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Three mesoporous silica materials (MCM-41, MSN and BMMs) possessing different morphologies but similar hexagonal arranged mesopores with almost the same pore size (2–3 nm) were functionalized by Zn and [1-(trimethoxysilyl)propyl-3-methylimidazolium] ionic liquid (ILs) via post-grafting treatment. The ILs grafted mesoporous silicas were then characterized by porosity, microscopy and SAXS techniques, and the successful loading of Zn and ILs, as well as the different distribution of functional groups in different supports were shown. Furthermore, the cycloaddition reaction of CO2 with epoxide was employed to evaluate the influences of the ILs distribution, which was proved to be caused mainly by varying morphologies of different supports. All the catalysts showed good catalytic activities. Interestingly, at low temperature, the inter particle supported ILs in BMMs had the highest catalytic efficiency, while the aggregation grafting ILs on MCM-41 present the lowest activity. However, the mesoporous silicas with ordered arranged nanopores present the superiority at higher temperature. The results highlight the crucial role played by the morphology of the supports.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  CAS  PubMed  Google Scholar 

  2. Nugent P, Belmabkhout Y, Burd SD et al (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84

    Article  CAS  PubMed  Google Scholar 

  3. Zhang SJ, Sun J, Zhang XC et al (2014) Ionic liquid-based green processes for energy production. Chem Soc Rev 43:7838–7869

    Article  CAS  PubMed  Google Scholar 

  4. Khalifeh R, Naseri V, Rajabzadeh M (2020) Synthesis of imidazolium-based ionic liquid on modified magnetic nanoparticles for application in one-pot synthesis of trisubstituted imidazoles. ChemistrySelect 5(37):11453–11462

    Article  CAS  Google Scholar 

  5. Khalifeh R, Zarei Z, Rajabzadeh M (2021) Imidazolium-based ionic liquid immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-IM): as an efficient heterogeneous magnetic nanocatalyst for chemical fixation of carbon dioxide under green conditions. New J Chem 45(2):810–820

    Article  CAS  Google Scholar 

  6. Yuan H, Wu YF, Pan XM et al (2020) Pyridyl ionic liquid functionalized ZIF-90 for catalytic conversion of CO2 into cyclic carbonates. Catal Lett 150:3561–3571

    Article  CAS  Google Scholar 

  7. Zhang P, Zhiani R (2020) Synthesis of ionic liquids as novel nanocatalysts for fixation of carbon dioxide with epoxides by using a carbon dioxide balloon. Catal Lett 150:2254–2266

    Article  CAS  Google Scholar 

  8. Kim MI, Choi SJ, Kim DW et al (2014) Catalytic performance of zinc containing ionic liquids immobilized on silica for the synthesis of cyclic carbonates. J Ind Eng Chem 20:3102–3107

    Article  CAS  Google Scholar 

  9. Sun J, Cheng WG, Fan W et al (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today 148:361–367

    Article  CAS  Google Scholar 

  10. Kim DW, Chi DY (2004) Polymer-supported ionic liquids: imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations. Angew Chem Int Ed 43:483–485

    Article  CAS  Google Scholar 

  11. Zhang WH, He PP, Wu S et al (2016) Graphene oxide grafted hydroxyl-functionalized ionic liquid: a highly efficient catalyst for cycloaddition of CO2 with epoxides. Appl Catal A 509:111–117

    Article  CAS  Google Scholar 

  12. Lan DH, Chen L, Au CT et al (2015) One-pot synthesized multi-functional graphene oxide as a water-tolerant and efficient metal-free heterogeneous catalyst for cycloaddition reaction. Carbon 93:22–31

    Article  CAS  Google Scholar 

  13. Ding YS, Guo CY, Dong JY et al (2006) Novel organic modification of montmorillonite in hydrocarbon solvent using ionic liquid-type surfactant for the preparation of polyolefin-clay nanocomposites. J Appl Polym Sci 102:4314–4320

    Article  CAS  Google Scholar 

  14. Rezaei F, Amrollahi MA, Khalifeh R (2019) Design and synthesis of Fe3O4@SiO2/aza-crown ether-Cu(II) as a novel and highly efficient magnetic nanocomposite catalyst for the synthesis of 1, 2, 3-triazoles, 1-substituted 1H-tetrazoles and 5-substituted 1H-tetrazoles in green solvents. Inorg Chim Acta 489:8–18

    Article  CAS  Google Scholar 

  15. Rajabzadeh M, Khalifeh R, Eshghi H et al (2019) Design and preparation of hallow mesoporous silica spheres include CuO and its catalytic performance for synthesis of 1, 2, 3-triazole compounds via the click reaction in water. Catal Lett 149(4):1125–1134

    Article  CAS  Google Scholar 

  16. Rajabzadeh M, Khalifeh R, Eshghi H et al (2020) Design and synthesis of CuO@SiO2 multi-yolk@shell and its application as a new catalyst for CO2 fixation reaction under solventless condition. J Ind Eng Chem 89:458–469

    Article  CAS  Google Scholar 

  17. Hoffmann F, Cornelius M, Morell J et al (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251

    Article  CAS  Google Scholar 

  18. Pal N, Bhaumik A (2015) Mesoporous materials: versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Adv 5:24363–24391

    Article  CAS  Google Scholar 

  19. Mcmorn P, Hutchings GJ (2004) Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem Soc Rev 33:108–222

    Article  CAS  PubMed  Google Scholar 

  20. Song CE, Lee SG (2002) Supported chiral catalysts on inorganic materials. Chem Rev 102:3495–3524

    Article  CAS  PubMed  Google Scholar 

  21. Lagarde F, Srour H, Berthet N et al (2019) Investigating the role of SBA-15 silica on the activity of quaternary ammonium halides in the coupling of epoxides and CO2. J CO2 Util 34:34–39

    Article  CAS  Google Scholar 

  22. Han L, Park SW, Park DW (2009) Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate. Energy Environ Sci 2:1286–1292

    Article  CAS  Google Scholar 

  23. Sakai T, Tsutsumi Y, Ema T (2008) Highly active and robust organic-inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem 10:337–341

    Article  CAS  Google Scholar 

  24. He X, Bai SY, Sun JH et al (2018) Bipyridine-proline grafted silicas with different mesopore structures: their catalytic performance in asymmetric aldol reaction and structure effect. Catal Lett 148:2408–2417

    Article  CAS  Google Scholar 

  25. Hukkamäki J, Suvanto S, Suvanto M et al (2004) Influence of the pore structure of MCM-41 and SBA-15 silica fibers on atomic layer chemical vapor deposition of cobalt carbonyl. Langmuir 20:10288–10295

    Article  PubMed  Google Scholar 

  26. Zhu ZJ, Bai SY, Shang H et al (2020) One-pot assembling of hierarchical porous carbon/silica nanocomposites for cycloaddition reaction. Microporous Mesoporous Mater 293:109768

    Article  CAS  Google Scholar 

  27. Khalifeh R, Sorouri M, Damirchi EK et al (2020) Efficient and selective CO2 and CS2 conversion to cyclic carbonates and trithiocarbonates by using multishell hollow CoAl2O4 microsphere as a unique catalyst under solventless condition. J Taiwan Inst Chem Eng 115:229–241

    Article  CAS  Google Scholar 

  28. Pourhassan F, Khalifeh R, Eshghi H (2021) Well dispersed gold nanoparticles into the multi amine functionalized SBA-15 for green chemical fixation of carbon dioxide to cyclic carbonates under solvent free conditions. Fuel 287:119567

    Article  CAS  Google Scholar 

  29. Khalifeh R, Karimi M, Rajabzadeh M et al (2020) Synthesis and morphology control of nano CuAl2O4 hollow spheres and their application as an efficient and sustainable catalyst for CO2 fixation. J CO2 Util 41:101233

    Article  CAS  Google Scholar 

  30. Kresge CT, Leonowicz ME, Roth WJ et al (1992) Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  31. Bhattacharyya S, Wang H, Ducheyne P (2012) Polymer-coated mesoporous silica nanoparticles for the controlled release of macromolecules. Acta Biomater 8:3429–3435

    Article  CAS  PubMed  Google Scholar 

  32. Sun JH, Shan ZP, Maschmeyer T et al (2003) Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir 19:8395–8402

    Article  CAS  Google Scholar 

  33. Xu J, Wu HT, Ma CM et al (2013) Ionic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification. Appl Catal A 464–465:357–363

    Article  Google Scholar 

  34. Shang H, Bai SY, Yao J et al (2020) Bifunctional catalysts containing Zn(II) and imidazolium salt ionic liquids for chemical fixation of carbon dioxide. Chem Asian J 16:224–231

    Article  PubMed  Google Scholar 

  35. Bai SY, Hu XT, Sun JH et al (2014) Preparation and characterization of Ti supported bimodal mesoporous catalysts using a self-assembly route combined with a ship-in-a-bottle method. New J Chem 38:2128–2134

    Article  CAS  Google Scholar 

  36. Emmeluth C, Suhm MA, Luckhaus D (2003) A monomers-in-dimers model for carboxylic acid dimers. J Chem Phys 118:2242–2255

    Article  CAS  Google Scholar 

  37. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    Article  CAS  Google Scholar 

  38. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  39. Udayakumar S, Pandurangan A, Sinha PK (2005) Mesoporous material as catalyst for the production of fine chemical: synthesis of dimethyl phthalate assisted by hydrophobic nature MCM-41. J Mol Catal A Chem 240:139–154

    CAS  Google Scholar 

  40. Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792–14793

    Article  CAS  PubMed  Google Scholar 

  41. Pająk L, Jarzębski AB, Mrowiec-bialoń J et al (2000) SAXS studies on porous inorganic dry gels. Proc SPIE 4240:74–80

    Article  Google Scholar 

  42. de Moor PPEA, Beelen TPM, van Santen RA (1997) SAXS/WAXS study on the formation of precursors and crystallization of silicalite. Microporous Mater 9:117–130

    Article  Google Scholar 

  43. Boukari H, Lin JS, Harris MT (1997) Probing the dynamics of the silica nanostructure formation and growth by SAXS. Chem Mater 9:2376–2384

    Article  CAS  Google Scholar 

  44. Luo ZQ, Wang J, He YQ et al (2020) A stable Zn-based metal-organic framework as an efficient catalyst for carbon dioxide cycloaddition and alcoholysis at mild condition. Catal Lett 150:1408–1417

    Article  CAS  Google Scholar 

  45. Qin L, Ji YY, Ding T et al (2020) Poly(ionic liquid)s-supported N-heterocyclic carbene silver complexes for the cycloaddition of CO2 with epoxides. Catal Lett 150:1196–1203

    Article  CAS  Google Scholar 

  46. Wei RJ, Zhang XH, Du BY et al (2013) Synthesis of bis(cyclic carbonate) and propylene carbonate via a one-pot coupling reaction of CO2, bisepoxide and propylene oxide. RSC Adv 3:17307–17313

    Article  CAS  Google Scholar 

  47. Song JL, Zhang BB, Zhang P et al (2012) Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin. Catal Today 183:130–135

    Article  CAS  Google Scholar 

  48. Yang ZZ, Zhao YN, He LN (2011) CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv 1:545–567

    Article  CAS  Google Scholar 

  49. Yue S, Wang PP, Hao XY (2019) Synthesis of cyclic carbonate from CO2 and epoxide using bifunctional imidazolium ionic liquid under mild conditions. Fuel 251:233–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Beijing Municipal Natural Science Foundation (2172004), and the National Natural Science Foundation of China (21403011, 21576005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyang Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1084 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Sheng, M., Bai, S. et al. Ionic Liquids Grafted Mesoporous Silica for Chemical Fixation of CO2 to Cyclic Carbonate: Morphology Effect. Catal Lett 152, 781–790 (2022). https://doi.org/10.1007/s10562-021-03667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03667-9

Keywords

Navigation