Skip to main content
Log in

Stability and Kinetics of Silica-Protected Plasmonic Photocatalysts for Gas-Phase Degradation of Total Volatile Organic Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Stability and kinetics of plasmonic photocatalysts for gas-phase toluene degradation were assessed by monitoring total volatile organic compound (TVOC) concentration versus UV-A illumination time in a recirculating batch reactor (plate-type flow-through). Plasmonic samples were produced by either coating silver on, or layering silica-protected or unprotected silver beneath, the photocatalyst. Samples were modeled using Finite difference time domain simulations, and characterized. Experimental results show that silver-coated photocatalysts, and photocatalysts layered over unprotected silver, exhibit initially high TVOC degradation rates compared to TiO2, but suffer from relatively rapid deactivation attributed to silver oxidation. Photocatalysts layered over silica-protected (i.e., silica-coated) silver exhibited improved stability versus photocatalysts layered over unprotected (i.e., uncoated) silver, and demonstrated more than 50% increase in reaction rate constant and more than a threefold increase in apparent quantum yield over the non-plasmonic control sample (TiO2 over SiO2). The results of this study demonstrate that a silica layer can help slow down fouling of silica nanoparticles, and that silica-coated silver nanoparticles not only help speed up reaction rate overall but also appear to speed up release of adventitious carbon from the photocatalyst surface during the initial phase of a reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

TVOC:

Total volatile organic compounds

UV-A:

Ultraviolet-A

UV–Vis:

Ultraviolet–Visible

FT-IR:

Fourier Transform – Infrared

XPS:

X-ray photoelectron spectroscopy

FDTD:

Finite difference time domain

NPs:

Nanoparticles

References

  1. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680. https://doi.org/10.1021/ja076503n

    Article  CAS  PubMed  Google Scholar 

  2. Weng B, Qi MY, Han C, Tang ZR, Xu YJ (2019) Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catal 9(5):4642–4687. https://doi.org/10.1021/acscatal.9b00313

    Article  CAS  Google Scholar 

  3. Kang H, Buchman JT, Rodriguez RS, Ring HL, He JY, Bantz KC, Haynes CL (2019) Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev 119(1):664–699. https://doi.org/10.1021/acs.chemrev.8b00341

    Article  CAS  PubMed  Google Scholar 

  4. Al Tarazi S, Volpe L, Antonelli L, Jafer R, Batani D, d’Esposito A, Vitobello M (2014) Deposition of SiOx layer by plasma-enhanced chemical vapor deposition for the protection of silver (Ag) surfaces. Radiat Eff Defects Solids 169(3):217–224. https://doi.org/10.1080/10420150.2013.860972

    Article  CAS  Google Scholar 

  5. Sun SM, Wang WZ, Zhang L, Shang M, Wang L (2009) Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst. Catal Commun 11(4):290–293. https://doi.org/10.1016/j.catcom.2009.09.026

    Article  CAS  Google Scholar 

  6. Pickering JW, Bhethanabotla VR, Kuhn JN (2017) Plasmonic photocatalytic reactor design: use of multilayered films for improved organic degradation rates in a recirculating flow reactor. Chem Eng J 314:11–18. https://doi.org/10.1016/j.cej.2016.12.112

    Article  CAS  Google Scholar 

  7. Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25(5):2596–2600. https://doi.org/10.1021/la900113e

    Article  CAS  PubMed  Google Scholar 

  8. John JF, Mahurin S, Dai S, Sepaniak MJ (2010) Use of atomic layer deposition to improve the stability of silver substrates for in situ, high temperature SERS measurements. J Raman Spectrosc 41(1):4–11. https://doi.org/10.1002/jrs.2395

    Article  CAS  Google Scholar 

  9. Jiang CL, Wang H, Lin SZ, Ma F, Wang YQ, Ji HB (2019) Low-temperature photothermal catalytic oxidation of toluene on a core/shell SiO2@Pt@ZrO2 nanostructure. Ind Eng Chem Res 58(36):16450–16458. https://doi.org/10.1021/acs.iecr.9b02850

    Article  CAS  Google Scholar 

  10. Abis L, Dimitratos N, Sankar M, Freakley SJ, Hutchings GJ (2020) Plasmonic oxidation of glycerol using Au/TiO2 catalysts prepared by sol-immobilisation. Catal Lett 150(1):49–55. https://doi.org/10.1007/s10562-019-02952-y

    Article  CAS  Google Scholar 

  11. Asapu R, Claes N, Bals S, Denys S, Detavernier C, Lenaerts S, Verbruggen SW (2017) Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis. Appl Catal B-Environ 200:31–38. https://doi.org/10.1016/j.apcatb.2016.06.062

    Article  CAS  Google Scholar 

  12. Sachan R, Ramos V, Malasi A, Yadavali S, Bartley B, Garcia H, Duscher G, Kalyanaraman R (2013) Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv Mater 25(14):2045–2050. https://doi.org/10.1002/adma.201204920

    Article  CAS  PubMed  Google Scholar 

  13. Wang JF, Jia XK, Zhou JP, Pan LK, Huang SM, Chen XH (2016) Improved performance of polymer solar cells by thermal evaporation of AgAl alloy nanostructures into the hole-transport layer. ACS Appl Mater Interfaces 8(39):26098–26104. https://doi.org/10.1021/acsami.6b10173

    Article  CAS  PubMed  Google Scholar 

  14. Mao WJ, Zhang JK, Zhou JP, Huang SM, Zhang ZJ, Wei OY, Zhuo S, Chen XH (2019) Enhanced stability of plasmonic polymer solar cells using ferrocenedicarboxylic acid modification. Mater Res Express 6(7):1–8. https://doi.org/10.1088/2053-1591/ab14ca

    Article  CAS  Google Scholar 

  15. Chen XX, Li YP, Pan XY, Cortie D, Huang XT, Yi ZG (2016) Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun 7:8. https://doi.org/10.1038/ncomms12273

    Article  CAS  Google Scholar 

  16. Nyamukamba P, Tichagwa L, Ngilab JC, Petrik L (2017) Plasmonic metal decorated titanium dioxide thin films for enhanced photodegradation of organic contaminants. J Photochem Photobiol A-Chem 343:85–95. https://doi.org/10.1016/j.jphotochem.2017.04.014

    Article  CAS  Google Scholar 

  17. Janczarek M, Wei ZS, Endo M, Ohtani B, Kowalska E (2017) Silver- and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst. J Photonics Energy 7(1):1–16. https://doi.org/10.1117/1.Jpe.7.012008

    Article  Google Scholar 

  18. Ingram DB, Christopher P, Bauer JL, Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 1(10):1441–1447. https://doi.org/10.1021/cs200320h

    Article  CAS  Google Scholar 

  19. Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133(14):5202–5205. https://doi.org/10.1021/ja200086g

    Article  CAS  PubMed  Google Scholar 

  20. Christopher P, Ingram DB, Linic S (2010) Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 114(19):9173–9177. https://doi.org/10.1021/jp101633u

    Article  CAS  Google Scholar 

  21. Xie W, Li YZ, Sun W, Huang JC, Xie H, Zhao XJ (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobiol A-Chem 216(2–3):149–155. https://doi.org/10.1016/j.jphotochem.2010.06.032

    Article  CAS  Google Scholar 

  22. Gao FQ, Yang Y, Wang TH (2015) Preparation of porous TiO2/Ag heterostructure films with enhanced photocatalytic activity. Chem Eng J 270:418–427. https://doi.org/10.1016/j.cej.2015.02.048

    Article  CAS  Google Scholar 

  23. Einaga H (2006) Effect of silver deposition on TiO2 for photocatalytic oxidation of benzene in the gas phase. React Kinet Catal Lett 88(2):357–362. https://doi.org/10.1007/s11144-006-0072-9

    Article  CAS  Google Scholar 

  24. Hillenkamp M, Di Domenicantonio G, Eugster O, Felix C (2007) Instability of Ag nanoparticles in SiO2 at ambient conditions. Nanotechnology 18(1):4. https://doi.org/10.1088/0957-4484/18/1/015702

    Article  CAS  Google Scholar 

  25. Jafry HR, Liga MV, Li QL, Barron AR (2011) Simple route to enhanced photocatalytic activity of p25 titanium dioxide nanoparticles by silica addition. Environ Sci Technol 45(4):1563–1568. https://doi.org/10.1021/es102749e

    Article  PubMed  Google Scholar 

  26. Liga MV, Maguire-Boyle SJ, Jafry HR, Barron AR, Li QL (2013) Silica decorated TiO2 for virus inactivation in drinking water–simple synthesis method and mechanisms of enhanced inactivation kinetics. Environ Sci Technol 47(12):6463–6470. https://doi.org/10.1021/es400196p

    Article  CAS  PubMed  Google Scholar 

  27. Betancourt AP, Goswami DY, Bhethanabotla VR, Kuhn JN (2021) Scalable and stable silica-coated silver nanoparticles, produced by electron beam evaporation and rapid thermal annealing, for plasmon-enhanced photocatalysis. Catal Commun 149:106213

    Article  CAS  Google Scholar 

  28. Zhang Y, Stefanakos EK, Goswami DY (2013) Effect of photocatalytic surface roughness on reactors effectiveness for indoor air cleaning. Build Environ 61:188–196. https://doi.org/10.1016/j.buildenv.2012.12.018

    Article  Google Scholar 

  29. Goswami DY, Zhang Y, Stefanakos EK (2018) Enhancement of Photocatalytic Effect with Surface Roughness in Photocatalytic Reactors. United States Patent and Trademark Office (USPTO). Patent Version No. 9,889,221

  30. Bessergenev VG, Mateus MC, do Rego AMB, Hantusch M, Burkel E (2015) An improvement of photocatalytic activity of TiO2 Degussa P25 powder. Appl Catal A-Gen 500:40–50. https://doi.org/10.1016/j.apcata.2015.05.002

    Article  CAS  Google Scholar 

  31. Mathews NR, Morales ER, Cortes-Jacome MA, Antonio JAT (2009) TiO2 thin films–Influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 83(9):1499–1508. https://doi.org/10.1016/j.solener.2009.04.008

    Article  CAS  Google Scholar 

  32. Debono O, Thevenet F, Gravejat P, Hequet V, Raillard C, Lecoq L, Locoge N (2011) Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination. Appl Catal B-Environ 106(3–4):600–608. https://doi.org/10.1016/j.apcatb.2011.06.021

    Article  CAS  Google Scholar 

  33. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A-Chem 134(1–2):139–142. https://doi.org/10.1016/s1010-6030(00)00264-1

    Article  CAS  Google Scholar 

  34. Larson SA, Falconer JL (1997) Initial reaction steps in photocatalytic oxidation of aromatics. Catal Lett 44(1–2):57–65. https://doi.org/10.1023/a:1018920907725

    Article  CAS  Google Scholar 

  35. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C-Photochem Rev 24:64–82. https://doi.org/10.1016/j.jphotochemrev.2015.07.001

    Article  CAS  Google Scholar 

  36. Maira AJ, Yeung KL, Soria J, Coronado JM, Belver C, Lee CY (2001) Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl Catal B-Environ 29(4):327–336. https://doi.org/10.1016/s0926-3373(00)00211-3

    Article  CAS  Google Scholar 

  37. Einaga H, Futamura S, Ibusuki T (2002) Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl Catal B-Environ 38(3):215–225. https://doi.org/10.1016/s0926-3373(02)00056-5

    Article  CAS  Google Scholar 

  38. Goswami DY, Trivedi DM, Block SS (1997) Photocatalytic disinfection of indoor air. J Sol Energy Eng Trans-ASME 119(1):92–96. https://doi.org/10.1115/1.2871871

    Article  CAS  Google Scholar 

  39. Sun LZ, Bolton JR (1996) Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 100(10):4127–4134. https://doi.org/10.1021/jp9505800

    Article  CAS  Google Scholar 

  40. Mo JH, Zhang YP, Xu QJ (2013) Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. Appl Catal B-Environ 132:212–218. https://doi.org/10.1016/j.apcatb.2012.12.001

    Article  CAS  Google Scholar 

  41. Jeong MG, Park EJ, Seo HO, Kim KD, Kim YD, Lim DC (2013) Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts. Appl Surf Sci 271:164–170. https://doi.org/10.1016/j.apsusc.2013.01.155

    Article  CAS  Google Scholar 

  42. Goswami DY (2015) Principles of solar engineering, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  43. Kim SB, Hwang HT, Hong SC (2002) Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere 48(4):437–444. https://doi.org/10.1016/s0045-6535(02)00101-7

    Article  CAS  PubMed  Google Scholar 

  44. Bouzaza A, Laplanche A (2002) Photocatalytic degradation of toluene in the gas phase: comparative study of some TiO2 supports. J Photochem Photobiol A-Chem 150(1–3):207–212. https://doi.org/10.1016/s1010-6030(02)00088-6

    Article  CAS  Google Scholar 

  45. Fogler HS (2006) Elements of Chemical Reaction Engineering, 4th edn. Pearson Eduction Inc, Upper Saddle River, New Jersey

    Google Scholar 

  46. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  47. Goswami DY (1995) Engineering of solar photocatalytic detoxification and disinfection processes. In: Böer KW (ed) Advances in solar energy, vol 10. American Solar Energy Society Inc., Boulder, pp 165–209

    Google Scholar 

  48. Pickering JW, Bhethanabotla VR, Kuhn JN (2017) Assessment of mechanisms for enhanced performance of TiO2/YAG:Yb+3, Er+3 composite photocatalysts for organic degradation. Appl Catal B-Environ 202:147–155. https://doi.org/10.1016/j.apcatb.2016.09.007

    Article  CAS  Google Scholar 

  49. Doucet N, Zahraa O, Bouchy M (2007) Kinetics of the photocatalytic degradation of benzene. Catal Today 122(1–2):168–177. https://doi.org/10.1016/j.cattod.2007.01.023

    Article  CAS  Google Scholar 

  50. Broers AN, Molzen WW, Cuomo JJ, Wittels ND (1976) Electron-beam fabrication of 80- Å metal structures. Appl Phys Lett 29(9):596–598. https://doi.org/10.1063/1.89155

    Article  CAS  Google Scholar 

  51. Kisch H, Bahnemann D (2015) Best practice in photocatalysis: comparing rates or apparent quantum yields? J Phys Chem Lett 6(10):1907–1910. https://doi.org/10.1021/acs.jpclett.5b00521

    Article  CAS  PubMed  Google Scholar 

  52. Chen P, Cui W, Wang H, Dong XA, Li JY, Sun YJ, Zhou Y, Zhang YX, Dong F (2020) The importance of intermediates ring-opening in preventing photocatalyst deactivation during toluene decomposition. Appl Catal B-Environ 272:11. https://doi.org/10.1016/j.apcatb.2020.118977

    Article  CAS  Google Scholar 

  53. Kiss J, Kukovecz A, Konya Z (2019) Beyond nanoparticles: the role of sub-nanosized metal species in heterogeneous catalysis. Catal Lett 149(6):1441–1454. https://doi.org/10.1007/s10562-019-02734-6

    Article  CAS  Google Scholar 

  54. Lewis NS, Rosenbluth ML (1989) Theory of semiconductor materials. In: Serpone N, Pelizzetti E (eds) Photocatalysis: fundamentals and applications. Wiley, New York, pp 45–98

    Google Scholar 

  55. Vikrant K, Park CM, Kim KH, Kumar S, Jeon EC (2019) Recent advancements in photocatalyst-based platforms for the destruction of gaseous benzene: performance evaluation of different modes of photocatalytic operations and against adsorption techniques. J Photochem Photobiol C-Photochem Rev 41:24. https://doi.org/10.1016/j.jphotochemrev.2019.08.003

    Article  CAS  Google Scholar 

  56. Anwer H, Mahmood A, Lee J, Kim KH, Park JW, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res 12(5):955–972. https://doi.org/10.1007/s12274-019-2287-0

    Article  CAS  Google Scholar 

  57. De Witte K, Ribbens S, Meynen V, De Witte I, Ruys L, Cool P, Vansant EF (2008) Photocatalytic study of P25 and mesoporous titania in aqueous and gaseous environment. Catal Commun 9(8):1787–1792. https://doi.org/10.1016/j.catcom.2008.02.013

    Article  CAS  Google Scholar 

  58. Moriwaki H, Oshima M (2020) Effect of visible light irradiation on catalytic activity of gold nanoparticles and perylene adsorbed on silica gel. Catal Commun 145:7. https://doi.org/10.1016/j.catcom.2020.106116

    Article  CAS  Google Scholar 

  59. Dudek K, Podworny J, Dulski M, Nowak A, Peszke J (2017) X-ray investigations into silica/silver nanocomposite. Powder Diffr 32:S82–S86. https://doi.org/10.1017/s0885715617000185

    Article  CAS  Google Scholar 

  60. Linstrom PJ, Mallard WG (2020) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, Maryland, USA. https://webbook.nist.gov. Accessed 28 July 2020.

  61. Dean JA (1985) Lange’s handbook of chemistry, 13th edn. McGraw-Hill Book Company, New York

    Google Scholar 

  62. Nain R, Dobhal S, Bidaliya P, Saini G, Pani B, Sirohi S (2018) Ag decorated silica nanostructures for surface plasmon enhanced photocatalysis. RSC Adv 8(36):20287–20294. https://doi.org/10.1039/c8ra02543f

    Article  CAS  Google Scholar 

  63. Einaga H, Futamura S, Ibusuki T (1999) Photocatalytic decomposition of benzene over TiO(2) in a humidified airstream. Phys Chem Chem Phys 1(20):4903–4908. https://doi.org/10.1039/a906214i

    Article  CAS  Google Scholar 

  64. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758. https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  65. Zhang GL, Chen L, Fu XQ, Wang H (2018) Cellulose microfiber-supported TiO2@Ag nanocomposites: a dual-functional platform for photocatalysis and in situ reaction monitoring. Ind Eng Chem Res 57(12):4277–4286. https://doi.org/10.1021/acs.iecr.8b00006

    Article  CAS  Google Scholar 

  66. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie

    Google Scholar 

  67. United States National Institute of Standards and Technology (2000). X-Ray Photoelectron Spectroscopy Database. NIST Standard Reference Database No. 20. https://srdata.nist.gov. Accessed 19 Nov 2020.

  68. Lv X, Gao FQ, Yang Y, Wang TH (2016) A Facile electrochemical approach to form TiO2/Ag heterostructure films with enhanced photocatalytic activity. Ind Eng Chem Res 55(1):107–115. https://doi.org/10.1021/acs.iecr.5b02867

    Article  CAS  Google Scholar 

  69. Hammad A, Anzai A, Zhu X, Yamamoto A, Ootsuki D, Yoshida T, El-Shazly A, Elkady M, Yoshida H (2020) Photodeposition conditions of silver cocatalyst on titanium oxide photocatalyst directing product selectivity in photocatalytic reduction of carbon dioxide with water. Catal Lett 150(4):1081–1088. https://doi.org/10.1007/s10562-019-02997-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following staff and students at the University of South Florida (USF) for their assistance: Dr. Shuangming Li for assistance on operating the electron-beam evaporator and rapid thermal annealing oven; Dr. Jay Bieber for XPS analysis and advice regarding interpretation of XPS data; Dr. Jay Bieber, Richard “Chip” Curtis, and Stephen Fry for assistance and training on the scanning electron microscope (SEM) and electron beam (e-beam) evaporator; Richard Everly for assistance and training on the rapid thermal annealing oven; Dave Young for advice regarding FT-IR; Dr. Krishnendu Maity for training on the FT-IR; and Craig Chase of the Kurt J. Lesker Company for advice on e-beam deposition of silica.

Funding

Funding for this research was provided by the Clean Energy Research Center (CERC) at the University of South Florida (USF), and by the USF Signature Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. The following lists the contributions of each author. Amaury Betancourt: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project Administration; Validation; Writing—original draft; Writing—review & editing. DYG: Conceptualization; Funding acquisition; Project administration; Resources; Supervision; Writing—review & editing. JNK: Formal analysis; Validation; Writing—review & editing. VRB: Conceptualization; Methodology; Resources; Validation; Visualization; Writing—review & editing.

Corresponding author

Correspondence to Amaury P. Betancourt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancourt, A.P., Goswami, D.Y., Bhethanabotla, V.R. et al. Stability and Kinetics of Silica-Protected Plasmonic Photocatalysts for Gas-Phase Degradation of Total Volatile Organic Compounds. Catal Lett 152, 641–658 (2022). https://doi.org/10.1007/s10562-021-03666-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03666-w

Keywords

Navigation