Skip to main content
Log in

Growth of KR3F10 (R = Tb–Er) Crystals by the Vertical Directional Crystallization Technique. I: Optimization of the Melt Composition for the Growth of KTb3F10 and Correction of the Phase Diagram of the KF–TbF3 System

  • CRYSTAL GROWTH
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

KTb3F10 crystals have been grown from the melt by the vertical directional crystallization. The incongruent character of melting of this compound is confirmed experimentally. Corrections are introduced into the phase diagram of the KF–TbF3 system. It is found that the optimal pre-peritectic composition for the KTb3F10 crystal growth corresponds to a KF content of 27.5 ± 0.5 mol % in melt. The KTb3F10 composition is a part of a nonstoichiometric phase of variable composition. The cubic (sp. gr. \(Fm\bar {3}m\)) lattice parameters are limited to the range from 11.679(1) to 11.663(1) Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. Manzi, Lasers Optronics 8, 63 (1989).

    Google Scholar 

  2. D. Vojna, O. Slezák, A. Lucianetti, and T. Mocek, Appl. Sci. 9 (15), 3160 (2019). https://doi.org/10.3390/app9153160

    Article  Google Scholar 

  3. U. V. Valiev, D. N. Karimov, G. W. Burdick, et al., J. Appl. Phys. 121, 243105 (2017). https://doi.org/10.1063/1.4989839

    Article  ADS  Google Scholar 

  4. V. Vasyliev, E. G. Villora, M. Nakamura, et al., Opt. Express 20 (13), 14460 (2012). https://doi.org/10.1364/OE.20.014460

    Article  ADS  Google Scholar 

  5. D. N. Karimov, B. P. Sobolev, I. A. Ivanov, et al., Crystallogr. Rep. 59 (5), 718 (2014). https://doi.org/10.1134/S1063774514050083

    Article  ADS  Google Scholar 

  6. D. N. Karimov, N. L. Sizova, B. P. Sobolev, and D. S. Lisovenko, Crystallogr. Rep. 63 (1), 96 (2018). https://doi.org/10.1134/S1063774518010108

    Article  ADS  Google Scholar 

  7. S. L. Chamberlain, G. Luo, and L. R. Corruccini, Phys. Rev. B 67, 134414 (2003). https://doi.org/10.1103/PhysRevB.67.134414

    Article  ADS  Google Scholar 

  8. N. V. Podberezskaya, O. G. Potapov, S. V. Borisov, and Yu. V. Gatilov, Zh. Strukt. Khim. 17 (5), 948 (1976).

    Google Scholar 

  9. M. J. Weber, R. Morgret, and S. Y. Leung, J. Appl. Phys. 49, 3464 (1978). https://doi.org/10.1063/1.325255

    Article  ADS  Google Scholar 

  10. Potassium Terbium Fluoride Crystal Growth Development for Faraday Rotator Discs Fabrication, United States, July 6, 1978–February, 6 1979. https://doi.org/10.2172/5983726; https://www.osti.gov/servlets/purl/5983726

  11. K. T. Stevens, W. Schlichting, G. Foundos, et al., Laser Tech. J. 3, 18 (2016). https://doi.org/10.1002/latj.201600017

    Article  Google Scholar 

  12. W. Schlichting, K. Stevens, G. Foundos, and A. Payne, Proc. SPIE 104481N (2017). https://doi.org/10.1117/12.2279684

  13. L. R. Batsanova and V. P. Doronina, Izv. Akad. Nauk SSSR, Neorg. Mater. 8 (12), 2142 (1972).

    Google Scholar 

  14. P. P. Fedorov, Russ. J. Inorg. Chem. 44 (11), 1703 (1999).

    Google Scholar 

  15. V. P. Doronina, O. G. Taryshkina, N. V. Podberezskaya, and L. R. Batsanova, Izv. Akad. Nauk SSSR, Neorg. Mater. 12 (4), 643 (1976).

    Google Scholar 

  16. Melting Diagrams of Salt Systems: A Handbook, Part 2, Ed. by V. I. Posypaiko and E. A. Alekseev (Metallurgiya, Moscow, 1977).

    Google Scholar 

  17. B. P. Sobolev, P. P. Fedorov, D. B. Steynberg, et al., J. Solid State Chem. 17 (1/2), 191 (1976). https://doi.org/10.1016/0022-4596(76)90220-6

    Article  ADS  Google Scholar 

  18. E. I. Ardashnikova, M. P. Borzenkova, and A. V. Novoselova, Zh. Neorg. Chim. 25 (6), 1501 (1980).

    Google Scholar 

  19. J.-J. Maguer, M. P. Crosnier-Lopez, and G. Courbion, J. Solid State Chem. 128 (1), 42 (1997). https://doi.org/10.1006/jssc.1996.7145

    Article  ADS  Google Scholar 

  20. D. J. M. Bevan and S. E. Lawton, Acta Crystallogr. B 42, 55 (1986). https://doi.org/10.1107/S0108768186098580

    Article  Google Scholar 

  21. N. M. Khaidukov, T. G. Filatova, M. B. Ikrami, and P. P. Fedorov, Inorg. Mater. 29 (7), 1152 (1993).

    Google Scholar 

  22. A. De Kozak and M. Almai, Rev. Chim. Miner. 15, 139 (1978).

    Google Scholar 

  23. Y. Le Fur, S. Aleonard, M. F. Gorius, and M. T. Roux, Z. Kristallogr. 182, 281 (1988). https://doi.org/10.1524/zkri.1988.182.14.281

    Article  Google Scholar 

  24. P. Gredin, J. Labéguerie, A. Pierrard, et al., Solid. State Sci. 6, 1221 (2004). https://doi.org/10.1016/j.solidstatesciences.2004.07.010

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences (RAS) using the equipment of the Shared Research Center of the Federal Scientific Research Centre “Crystallography and Photonics” of the RAS (project no. RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Buchinskaya.

Additional information

Translated by A. Zolot’ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, D.N., Buchinskaya, I.I. Growth of KR3F10 (R = Tb–Er) Crystals by the Vertical Directional Crystallization Technique. I: Optimization of the Melt Composition for the Growth of KTb3F10 and Correction of the Phase Diagram of the KF–TbF3 System. Crystallogr. Rep. 66, 535–540 (2021). https://doi.org/10.1134/S1063774521030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521030081

Navigation