Skip to main content
Log in

Intersections of Boerdijk–Coxeter Helices in Three-Dimensional Euclidian Space

  • CRYSTALLOGRAPHIC SYMMETRY
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Various intersections of Boerdijk–Coxeter (BC) helices consisting of regular tetrahedra and having the same chirality are considered in a three-dimensional Euclidean space. The angles between their axes are calculated. Next, these rigorous geometric models of intersections of BC helices are subjected to physically justified distortions (merging of closely spaced vertices and formation of additional bonds between vertices spaced by a distance of about a tetrahedron-edge length). It is shown that with introduction of these distortions there are seven different types of intersection of two BC helices passing through the same icosahedron. They correspond to seven types of intersection of helices 30/11 in a polytope {3, 3, 5}. For different discretized Hopf fibrations of the set of polytope {3, 3, 5} vertices, it is demonstrated that the local structure of a polytope {3, 3, 5} in the vicinity of a Hopf circle passing through the polytope vertices can be described as a certain set of intersecting helices 30/11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Formula 30/11 indicates that a helix makes 11 complete turns within a helix period, which comprises 30 repeating units.

REFERENCES

  1. E. A. Lord, A. L. McKay, and S. Ranganathan, New Geometries for New Materials (Cambridge Univ. Press, Cambridge, 2006).

    MATH  Google Scholar 

  2. H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, Nature 402, 276 (1999). https://doi.org/10.1038/46248

    Article  ADS  Google Scholar 

  3. N. A. Bul’enkov, Sov. Phys. Crystallogr. 33 (2), 250 (1988).

    Google Scholar 

  4. O. A. Belyakova and Yu. L. Slovokhotov, Russ. Chem. Bull., Int. Ed. 52 (11), 2299 (2003). https://doi.org/10.1023/B:RUSB.0000012351.07223.d4

    Article  Google Scholar 

  5. H. Nyman, C. E. Carroll, and B. G. Hyde, Z. Kristallogr. 196, 39 (1991). https://doi.org/10.1524/zkri.1991.196.1-4.39

    Article  Google Scholar 

  6. A. L. Talis and A. L. Rabinovich, Crystallogr. Rep. 64 (3), 367 (2019). https://doi.org/10.1134/S106377451903026X

    Article  ADS  Google Scholar 

  7. R. Mosseri, D. P. DiVincenzo, J. F. Sadoc, and M. H. Brodsky, Phys. Rev. B 32 (6), 3974 (1985). https://doi.org/10.1103/PhysRevB.32.3974

    Article  ADS  MathSciNet  Google Scholar 

  8. H. S. M. Coxeter, Introduction to Geometry (Wiley, New York, 1961).

    MATH  Google Scholar 

  9. J. F. Sadoc, Eur. Phys. J. E 5, 575 (2001). https://doi.org/10.1007/s101890170040

    Article  Google Scholar 

  10. H. S. M. Coxeter, Can. Math. Bull. 28 (4), 385 (1985). https://doi.org/10.4153/CMB-1985-045-5

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to N.A. Bul’enkov for fruitful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Zheligovskaya.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheligovskaya, E.A. Intersections of Boerdijk–Coxeter Helices in Three-Dimensional Euclidian Space. Crystallogr. Rep. 66, 377–386 (2021). https://doi.org/10.1134/S1063774521030329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521030329

Navigation