Skip to main content
Log in

Surface Evolution at the Phase Transitions in (NH4)3H(SeO4)2 Crystals

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The (NH4)3H(SeO4)2 crystals in the temperature range of 296–343 K and the evolution of their surface at phase transitions have been studied by atomic force microscopy. Data on morphology and local electrical characteristics of crystal surface are obtained. Local current–voltage characteristics are measured, and the existence of structural phase transition to the phase with superprotonic conductivity at T ≈ 308 K is confirmed. A layer of non-conducting phase of variable composition is shown to appear on the crystal surface at the phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Norby, Nature 410 (6831), 877 (2001).

    Article  ADS  Google Scholar 

  2. R. Fitzgerald, Phys. Today 54 (7), 22 (2001). https://doi.org/10.1063/1.1397388

    Article  Google Scholar 

  3. A. I. Baranov, Crystallogr. Rep. 48 (6), 1012 (2003). https://doi.org/10.1134/1.1627443

    Article  ADS  Google Scholar 

  4. A.-C. Dupuis, Prog. Mater. Sci. 56, 289 (2011). https://doi.org/10.1016/j.pmatsci.2010.11.001

    Article  Google Scholar 

  5. K. Lukaszewicz, A. Pietraszko, and M. A. Augustyniak, Acta Crystallogr. C 49, 430 (1993). https://doi.org/10.1107/S010827019200739X

    Article  Google Scholar 

  6. A. Pietraszko, K. Lukaszewicz, and M. A. Augustyniak, Acta Crystallogr. C 48, 2069 (1992). https://doi.org/10.1107/S0108270192005006

    Article  Google Scholar 

  7. A. Pietraszko and K. Lukaszewicz, Bull. Pol. Acad. Sci., Chem. 41 (3), 157 (1993).

    Google Scholar 

  8. T. Fukami, K. Tobaru, K. Kaneda, et al., J. Phys. Soc. Jpn. 63, 2829 (1994). https://doi.org/10.1143/JPSJ.63.2829

    Article  ADS  Google Scholar 

  9. Łukaszewicz K, A. Pietraszko, and M. A. Augustyniak, Ferroelectrics 172 (1), 307 (1995). https://doi.org/10.1080/00150199508018490

    Article  Google Scholar 

  10. T. Fukami, K. Nakasone, and K. Furukawa, Phys. Status Solidi A 153, 319 (1996). https://doi.org/10.1002/pssa.2211530204

    Article  ADS  Google Scholar 

  11. K. Furukawa, Sh. Akahoshi, T. Fukami, and K. Hukuda, J. Phys. Soc. Jpn. 59, 4560 (1990). https://doi.org/10.1143/JPSJ.59.4560

    Article  ADS  Google Scholar 

  12. A. Pawlowski, Cz. Pawlaczyk, and B. Hilczer, Solid State Ionics 44, 17 (1990). https://doi.org/10.1016/0167-2738(90)90038-S

    Article  Google Scholar 

  13. R. H. Chen, T. M. Chen, and C. S. Shern, J. Phys. Chem. Solids 59 (6–7), 1009 (1998). https://doi.org/10.1016/S0022-3697(98)00007-9

    Article  ADS  Google Scholar 

  14. R. B. Merle, C. R. I. Chisholm, D. A. Boysen, and S. M. Haile, Energy Fuels 17, 210 (2003). https://doi.org/10.1021/ef0201174

    Article  Google Scholar 

  15. Ł. Lindner, M. Zdanowska-Frączek, A. Pawłowski, and Z. J. Frączek, J. Appl. Phys. 116, 163513 (2014). https://doi.org/10.1063/1.4899540

    Article  ADS  Google Scholar 

  16. T. Masłowski, M. Zdanowska-Fraczek, and Ł. Lindner, Solid State Ionics 306, 20 (2017). https://doi.org/10.1016/j.ssi.2017.02.015

    Article  Google Scholar 

  17. W. Ching-Jiunt, Y. Jiang-Tsu, T. Mei-Na, and L. Ssu-Hao, J. Phys.: Condens. Matter 3, 3795 (1991).

    ADS  Google Scholar 

  18. M. A. Augustyniak and S. K. Hoffmann, Ferroelectrics 132 (1), 129 (1992). https://doi.org/10.1080/00150199208009078

    Article  Google Scholar 

  19. S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Nature 410, 910 (2001). https://doi.org/10.1038/35073536

    Article  ADS  Google Scholar 

  20. D. Seol, B. Kim, and Y. Kim, Curr. Appl. Phys. 17 (5), 661 (2017). https://doi.org/10.1016/j.cap.2016.12.012

    Article  ADS  Google Scholar 

  21. R. K. Vasudevan, N. Balke, P. Maksymovych, et al., Appl. Phys. Rev. 4, 021302 (2017). https://doi.org/10.1063/1.4979015

    Article  ADS  Google Scholar 

  22. B. Papandrew, Q. Li, M. B. Okatan, et al., Nanoscale 7, 20089 (2015). https://doi.org/10.1039/c5nr04809e

    Article  ADS  Google Scholar 

  23. A. L. Roitburd, Soviet Physics Uspekhi, 17 (3), 326 (1974). https://doi.org/10.1070/PU1974v017n03ABEH004134

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences (RAS) and, in part, by the Program of Basic Research of the Presidium of the RAS 1.2.P no. 32. The experiments were performed using the equipment of the Shared Research Center of the Federal Scientific Research Centre “Crystallography and Photonics” of the RAS, with support of the Ministry of Science and Higher Education (project no. RFMEFI62119X0035). The preparation and preliminary characterization of the samples were performed with support of the Russian Foundation for Basic Research (project no. 18-32-20050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Tolstikhina.

Additional information

Translated by A. Zolot’ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainutdinov, R.V., Tolstikhina, A.L., Selezneva, E.V. et al. Surface Evolution at the Phase Transitions in (NH4)3H(SeO4)2 Crystals. Crystallogr. Rep. 66, 508–513 (2021). https://doi.org/10.1134/S1063774521030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521030068

Navigation