Skip to main content
Log in

Complexes of Nitrilotriacetic Acid with Amines. Molecular Structures of 2-Ammonioethanol Nitrilotriacetate and Bis{2-Ammonio-2-(Hydroxymethyl)propane-1,3-Diol} Nitrilotriacetate

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Reactions of nitrilotriacetic acid with 2-aminoethanol, 2-amino-2-(hydroxymethyl)propane-1,3-diol, and 2,2'-(ethylenedioxy)bis(ethylamine) afford the following salts in high yields: 2-ammonioethanol nitrilotriacetate [HN+(CH2COO)2(CH2COOH) ⋅ H3N+CH2CH2OH]n, bis{2-ammonio-2-(hydroxymethyl)propane-1,3-diol} nitrilotriacetate HN+(CH2COO)3 ⋅ 2H3N+C(CH2 OH)3, and 2,2'-(ethylenedioxy)bis(ethylammonium) nitrilotriacetate HN+(CH2COO)3 ⋅ H3N+CH2CH2OCH2CH2OCH2CH2N+H3. The molecular structures of 2-ammonioethanol nitrilotriacetate and bis{2-ammonio-2-(hydroxymethyl)propane-1,3-diol} nitrilotriacetate were determined. Nitrilotriacetic acid molecules in 2-ammonioethanol nitrilotriacetate are linked by O⋅⋅⋅H⋅⋅⋅O hydrogen bonds involving acid groups of adjacent molecules to form a polymer chain. On the contrary, nitrilotriacetic acid molecules in bis{2-ammonio-2-(hydroxymethyl)propane-1,3-diol} nitrilotriacetate do not form polymer chains. In the crystals of both compounds, adjacent molecules are linked by numerous O⋅⋅⋅H interactions to form infinite 3D frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. G. Granik, Fundamentals of Medical Chemistry (Vuzovskaya Kniga, Moscow, 2006) [in Russian].

    Google Scholar 

  2. A. V. Pestov, A. V. Virovets, N. V. Podberezskaya, and Yu. G. Yatluk, Russ. J. Coord. Chem. 34 (1), 1 (2008).

    Article  Google Scholar 

  3. M. R. Silva, J. A. Paixao, A. M. Beja, and L. A. da Veiga, Acta Crystallogr. C 57, 421 (2001). https://doi.org/10.1107/S0108270100020266/bj1011sup1.cif

    Article  Google Scholar 

  4. Bridger et al., Eur. Patent 569132 A1, Chem. Abstr., 1994, Vol. 120, 49593f.

  5. M. G. Voronkov and M. M. Rasulov, Khim.-Farm. Zh. 41, 1 (2007).

    Google Scholar 

  6. Yu. A. Kondratenko, T. A. Kochina, and V. S. Fundamenskii, Glass Phys. Chem. 42, 621 (2016).

    Article  Google Scholar 

  7. Yu. A. Kondratenko, G. G. Nyanikova, K. V. Molchanova, and T. A. Kochina, Glass Phys. Chem. 43, 445 (2017).

    Article  Google Scholar 

  8. M. A. Zakharov, Yu. V. Filatova, M. A. Bykov, et al., Russ. J. Coord. Chem. 46 (4), 268 (2020). https://doi.org/10.31857/S0132344X20040076

    Article  Google Scholar 

  9. Sh. Ghammamy, A. Hashemzadeh, and M. Mazareey, Russ. J. Org. Chem. 41, 1752 (2005).

    Article  Google Scholar 

  10. R. E. Khoma, V. O. Gel’mbol’t, O. V. Shishkin, et al., Russ. J. Inorg. Chem. 59, 1 (2014). https://doi.org/10.7868/S0044457X14010061

    Article  Google Scholar 

  11. R. E. Khoma, V. O. Gel’mbol’t, O. V. Shishkin, et al., Russ. J. Inorg. Chem. 59, 541 (2014).

    Article  Google Scholar 

  12. S. V. Loginov, I. A. Dain, V. B. Rybakov, et al., Crystallogr. Rep. 63, 58 (2018).

    Article  ADS  Google Scholar 

  13. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, et al., Izv. Akad. Nauk, Ser. Khim., No. 2, 336 (2018).

  14. N. V. Zolotareva, V. V. Semenov, and B. I. Petrov, Russ. J. Gen. Chem. 83, 1985 (2013).

    Article  Google Scholar 

  15. V. V. Semenov, N. V. Zolotareva, N. M. Lazarev, et al., Russ. J. Gen. Chem. 87, 92 (2017).

    Article  Google Scholar 

  16. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, et al., Agrokhimiya, No. 2, 51 (2020). https://doi.org/10.31857/S000218812002012X

  17. N. M. Dyatlova, V. Ya. Temkina, and K. I. Popov, Complexons and Complexonates of Metals (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  18. SAINT, Data Reduction and Correction Program (Bruker AXS, Madison, WI, 2014).

  19. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke, J. Appl. Crystallogr. 48, 3 (2015). https://doi.org/10.1107/S1600576714022985

    Article  Google Scholar 

  20. G. M. Sheldrick, Acta Crystallogr. A 71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  21. G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  22. J. Janczak, J. Mol. Struct. 1182, 9 (2019). https://doi.org/10.1016/j.molstruc.2019.01.027

    Article  ADS  Google Scholar 

  23. B. A. Zakharov, N. A. Tumanov, and E. V. Boldyreva, Cryst. Eng. Comm. 17, 2074 (2015). https://doi.org/10.1039/C4CE02550D

    Article  Google Scholar 

  24. T. Kraus, P. Budesinsky, I. Cisarova, and J. Zavada, Angew. Chem. 41, 1715 (2002). https://doi.org/10.1002/1521-3773(20020517)41:10<1715:AID-ANIE1715>3.0.CO;2-K

    Article  Google Scholar 

  25. Yu. V. Zefirov and P. M. Zorkii, Usp. Khim. 64, 446 (1995).

    Article  Google Scholar 

  26. S. Sarkhel and G. R. Desiraju, Proteins 54, 247 (2004). https://doi.org/10.1002/prot.10567

    Article  Google Scholar 

  27. C. V. Sharma Krishnamohan, K. Panneerselvam, T. Pilati, and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 2209 (1993). https://doi.org/10.1039/P29930002209

    Article  Google Scholar 

  28. S. J. Grabowski, Tetrahedron 54, 10153 (1998). https://doi.org/10.1016/S0040-4020(98)00607-3

    Article  Google Scholar 

  29. L. Lo Presti, R. Soave, and R. Destro, J. Phys. Chem. B 110, 6405 (2006). https://doi.org/10.1021/jp056823y

    Article  Google Scholar 

  30. T. Steiner and W. Saenger, J. Am. Chem. Soc. 114, 10146 (1992). https://doi.org/10.1021/ja00052a009

    Article  Google Scholar 

Download references

Funding

The study was performed within the framework of the state assignment (subject no. 45.8 “Chemistry of Functional Materials,” registration no. 0094-2016-0012) using equipment of the Analytical Center of the Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences and was financially supported by the Federal Target Program “Research and Development in Priority Areas of the Science and Technology Complex of Russia for 2014—2020” (unique project identifier RFMEFI62120X0040). The work was financially supported by the Presidium of the Russian Academy of Sciences (program no. 35 “Scientific Foundations for Design of New Functional Materials”). The single-crystal X-ray diffraction studies were carried out within the framework of the state assignment (subject no. 44.2, registration no. AAAA-A16-116122110053-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Semenov.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantcev, R.V., Zolotareva, N.V., Novikova, O.V. et al. Complexes of Nitrilotriacetic Acid with Amines. Molecular Structures of 2-Ammonioethanol Nitrilotriacetate and Bis{2-Ammonio-2-(Hydroxymethyl)propane-1,3-Diol} Nitrilotriacetate. Crystallogr. Rep. 66, 441–447 (2021). https://doi.org/10.1134/S1063774521030214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521030214

Navigation