Skip to main content
Log in

EFFECT OF MONTMORILLONITE LAYER CHARGE ON THE THERMAL STABILITY OF BENTONITE

  • Published:
Clays and Clay Minerals

Abstract

The thermal stability of bentonite is vitally important for its application in the casting field and the layer charge of montmorillonite (Qm) is one of its central crystal-chemical parameters. As the main component of bentonite, the influence of Qm on montmorillonite properties and behavior needs to be considered if bentonite is to be used in high-temperature environments. The objective of the current study was to investigate the relationship between Qm and the thermal stability of Chinese bentonite samples collected from Wuhu, Anhui Province (marked as WH); Xinyang, Henan Province (marked as XY); and Santai, Sichuan Province (marked as ST) below. The values of Qm were obtained using the O (11) method, and the structural properties of the bentonite samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and field emission scanning electron microscopy (FESEM). The results showed that, in the samples investigated, Qm was inversely related to the thermal stability of bentonite. The Qm value (electrons per half unit cell, e/huc) was greatest for sample ST (0.725 e/huc), followed by sample XY (0.470 e/huc), and by sample WH (0.354 e/huc). The dehydroxylation temperature changed related to Qm; the sample with the largest Qm value was WH (701°C), followed by sample XY (684°C), and sample ST (630°C). After the samples were calcined at 600°C, sample WH had the best montmorillonite structural integrity with the greatest degree of reusability (78.21%); while the montmorillonite structures of samples XY and ST were destroyed, and their reusabilities were only 9.48 and 6.01%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alver, B. E., & Gunal, A. (2016). Thermal, structural and ethylene adsorption properties of Ag-, Cu- and Fe-modified bentonite from Turkey. Journal of Thermal Analysis and Calorimetry, 126, 1533–1540.

    Article  Google Scholar 

  • Bala, P., Samantaray, B. K., & Srivastava, S. K. (2012). Dehydration transformation in Ca-montmorillonite. Bulletin of Materials Science, 23, 61–67.

    Article  Google Scholar 

  • Beňo, J., Vontorová, J., Matìjka, V., & Gál, K. (2015). Evaluation of the thermal resistance of selected bentonite binders. Materiali in Tehnologije, 49, 465–469.

    Article  Google Scholar 

  • Boeva, N. M., Bocharnikova, Y. I., Belousov, P. E., & Zhigarev, V. V. (2016). Determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis method. Russian Journal of Physical Chemistry A, 90, 1525–1529.

    Article  Google Scholar 

  • Boylu, F. (2011). Optimization of foundry sand characteristics of soda-activated calcium bentonite. Applied Clay Science, 52, 104–108.

    Article  Google Scholar 

  • Caglar, B., Topcu, C., Coldur, F., Sarp, G., Caglar, S., Tabak, A., & Sahin, E. (2016). Structural, thermal, morphological and surface charge properties of dodecyltrimethylammonium-smectite composites. Journal of Molecular Structure, 1105, 70–79.

    Article  Google Scholar 

  • Chai, M., Li, C. X., Jiang, W., & Du, F. (2013). Effect of cations on thermal properties of montmorillonite. Global Geology, 16, 88–93.

    Google Scholar 

  • Chen, T. X., Yuan, Y., Zhao, Y. L., Rao, F., & Song, S. X. (2018). Effect of layer charges on exfoliation of montmorillonite in aqueous solutions. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 548, 92–97.

    Google Scholar 

  • Finck, N., Schlegel, M. L., Dardenne, K., Adam, C., Kraft, S., Bauer, A., & Robert, J. L. (2019). Structural iron in smectites with different charge locations. Physics and Chemistry of Minerals, 46, 639–661.

    Article  Google Scholar 

  • Gauglitz, R., & Schwiete, H. E. (1964). Thermochemical investigations on montmorillonite with regards to type, grain size, and cation loading. Berichte Deutsche Keramik Ges, 38, 43–49.

    Google Scholar 

  • Geng, G. F., & Liu, C. (2013). The application of bentonite on green sand molding. China Foundry Machinery and Technology, 000, 29–31.

    Google Scholar 

  • Gong, Z. J., Liao, L. B., Lv, G. C., & Wang, X. Y. (2016). A simple method for physical purification of bentonite. Applied Clay Science, 119, 294–300.

    Article  Google Scholar 

  • Grim, R. E., & Rowland, R. A. (1942). Differential thermal analysis of clay minerals and other hydrous materials. American Mineralogist, 27, 746–761.

    Google Scholar 

  • Hoang-Minh, T., Kasbohm, J., Nguyen-Thanh, L., Nga, P. T., Lai, L. T., Duong, N. T., Thanh, N. D., Thuyet, N. T. M., Anh, D. D., Pusch, R., Knutsson, S., & Mahlmann, R. F. (2019). Use of TEM-EDX for structural formula identification of clay minerals: A case study of Di Linh bentonite Vietnam. Journal of Applied Crystallography, 52, 133–147.

    Article  Google Scholar 

  • Holtzer, M., Bobrowski, A., & Żymankowska-Kumon, S. (2011). Temperature influence on structural changes of foundry bentonites. Journal of Molecular Structure, 1004, 102–108.

    Article  Google Scholar 

  • Jiang, X., Nie, J., Bian, L., Dong, F., Song, M., He, Y., He, H., Zheng, Z., Huo, T., Li, B., Belzile, N., Sun, S., & Zou, H. (2019). Competitive adsorption of uranyl and toxic trace metal ions at MFe2O4-montmorillonite (M = Mn, Fe, Zn Co, or Ni) interfaces. Clays and Clay Minerals, 67, 291–305.

    Article  Google Scholar 

  • Jordan, G., Eulenkamp, C., Calzada, E., Schillinger, B., Hoelzel, M., Gigler, A., Stanjek, H., & Schmahl, W. W. (2013). Quantitative in situ study of the dehydration of bentonite-bonded molding sands. Clays and Clay Minerals, 61, 133–140.

    Article  Google Scholar 

  • Kaufhold, S., Dohrmann, R., Ufer, K., & Meyer, F. M. (2003). Comparison of methods for the quantification of montmorillonite in bentonites. Applied Clay Science, 22, 145–151.

    Article  Google Scholar 

  • Kaufhold, S., Stucki, J. W., Finck, N., Steininger, R., Zimina, A., Dohrmann, R., Ufer, K., Pentrak, M., & Pentrakova, L. (2017). Tetrahedral charge and Fe content in dioctahedral smectites. Clay Minerals, 52, 51–65.

    Article  Google Scholar 

  • Koutsopoulou, E., Koutselas, I., Christidis, G. E., Papagiannopoulos, A., & Marantos, I. (2020). Effect of layer charge and charge distribution on the formation of chitosan-smectite bionanocomposites. Applied Clay Science. https://doi.org/10.1016/j.clay.2020.105583.

    Article  Google Scholar 

  • Liu, Y. L., Xu, B. Y., Qin, B., Tao, C. Z., Cao, L., Shen, Y. S., & Zhu, S. M. (2020). Novel nimow-clay hybrid catalyst for highly efficient hydrodesulfurization reaction. Catalysis Communications. https://doi.org/10.1016/j.catcom.2020.106086.

    Article  Google Scholar 

  • Magzoub, M. I., Nasser, M. S., Hussein, I. A., Benamor, A., Onaizi, S. A., Sultan, A. S., & Mahmoud, M. A. (2017). Effects of sodium carbonate addition, heat and agitation on swelling and rheological behavior of Ca-bentonite colloidal dispersions. Applied Clay Science, 147, 176–183.

    Article  Google Scholar 

  • Paluszkiewicz, C., Holtzer, M., & Bobrowski, A. (2008). FTIR analysis of bentonite in moulding sands. Journal of Molecular Structure, 880, 109–114.

    Article  Google Scholar 

  • Qiu, J., Li, G. Q., Liu, D. L., Jiang, S., Wang, G. F., Chen, P., Zhu, X. N., Yao, G., Liu, X. D., & Lyu, X. J. (2019a). Effect of layer charge density on hydration properties of montmorillonite: Molecular dynamics simulation and experimental study. International Journal of Molecular Sciences, 20, 3997–4013.

    Article  Google Scholar 

  • Qiu, J., Li, G. Q., Jiang, S., Liu, D. L., Chen, P., & Wang, G. F. (2019b). Effect of layer charge on adsorption properties of octadecyl trimethyl ammonium chloride by montmorillonite. Science of Advanced Materials, 11, 299–305.

    Article  Google Scholar 

  • Qiu, J., Zhang, Y. G., & Lv, X. J. (2007). Study on relation between layer charge and hydro-properties of montmorillonite. Non-Metallic Mines, 30, 15–17.

    Google Scholar 

  • Rakhimova, N. R., Rakhimov, R. Z., Morozov, V. P., & Eskin, A. A. (2021). Calcined low-grade clays as sources for zeolite containing material. Periodica Polytechnica-Civil Engineering, 65, 204–214.

    Google Scholar 

  • Sakizci, M., Alver, B. E., Alver, Ö., & Yörükoğullari, E. (2010). Spectroscopic and thermal studies of bentonites from Ünye, Turkey. Journal of Molecular Structure, 969, 187–191.

    Article  Google Scholar 

  • Sans, B. E., Guven, O., Esenli, F., & Celik, M. S. (2017). Contribution of cations and layer charges in the smectite structure on zeta potential of Ca-bentonites. Applied Clay Science, 143, 415–421.

    Article  Google Scholar 

  • Sarikaya, Y., Onal, M., Baran, B., & Alemdaroglu, T. (2000). The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clays and Clay Minerals, 48, 557–562.

    Article  Google Scholar 

  • Schnetzer, F., Thissen, P., Giraudo, N., & Emmerich, K. (2016). Unraveling the coupled processes of (De) hydration and structural changes in Na+-saturated montmorillonite. Journal of Physical Chemistry C, 120, 15282–15287.

    Article  Google Scholar 

  • Sun, H. J., Peng, T. J., Liu, B., & Xian, H. Y. (2015). Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Applied Clay Science, 114, 440–446.

    Article  Google Scholar 

  • Sun, H. J., Peng, T. J., & Liu, Y. (2007). Measurement and mechanism of layer charge of phyllosilicate with expansive layers. Acta Mineralogica Sinica, 27, 19–24.

    Google Scholar 

  • Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., & Kaufhold, S. (2008). Quantitative phase analysis of bentonites by the rietveld method. Clays and Clay Minerals, 56, 272–282.

    Article  Google Scholar 

  • Wolters, F., & Emmerich, K. (2007). Thermal reactions of smectites-Relation of dehydroxylation temperature to octahedral structure. Thermochimica Acta, 462, 80–88.

    Article  Google Scholar 

  • Wu, P., Wu, H., & Li, R. (2005). The microstructural study of thermal treatment montmorillonite from Heping, China. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 61, 3020–3025.

    Article  Google Scholar 

  • Wu, P. X., Zhang, H. F., Wang, F. Y., Guo, J. G., & Zhao, W. X. (1999). The SEM study on the montmorillonite and its thermal treatment products. Mineralogy and Petrology, 19, 21–25.

    Google Scholar 

  • Yang, Y. F., Nair, A. K. N., & Sun, S. Y. (2019). Layer charge effects on adsorption and diffusion of water and ions in interlayers and on external surfaces of montmorillonite. ACS Earth and Space Chemistry, 3, 2635–2645.

    Article  Google Scholar 

  • Yang, Y., Yao, H., & Chen, S. (2006). Characteristics of microcosmic structure of guangxi expansive soil. Rock and Soil Mechanics, 27, 155–158.

    Google Scholar 

  • Zhu, T. T., Zhou, C. H., Kabwe, F. B., Wu, Q. Q., Li, C. S., & Zhang, J. R. (2019). Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 48–66.

    Article  Google Scholar 

  • Żymankowska-Kumon, S., Holtzer, M., Olejnik, E., & Bobrowski, A. (2012). Influence of the changes of the structure of foundry bentonites on their binding properties. Materials Science, 18, 57–61.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Fund of China [grant number 41972042,42072048] and the National Key R & D Program of China [grant number 2018YFC1802902].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Sun.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

(Received 5 November 2020; revised 12 February 2021; AE: Runliang Zhu)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Peng, T., Sun, H. et al. EFFECT OF MONTMORILLONITE LAYER CHARGE ON THE THERMAL STABILITY OF BENTONITE. Clays Clay Miner. 69, 328–338 (2021). https://doi.org/10.1007/s42860-021-00117-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00117-w

Keywords

Navigation