Skip to main content
Log in

A Factorization Theorem for Harmonic Maps

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let f be a harmonic map from a Riemann surface to a Riemannian n-manifold. We prove that if there is a holomorphic diffeomorphism h between open subsets of the surface such that \(f\circ h = f\), then f factors through a holomorphic map onto another Riemann surface. If such h is anti-holomorphic, we obtain an analogous statement. For minimal maps, this result is well known and is a consequence of the theory of branched immersions of surfaces due to Gulliver–Osserman–Royden. Our proof relies on various geometric properties of the Hopf differential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alling, N.L., Greenleaf, N.: Foundations of the Theory of Klein Surfaces. Lecture Notes in Mathematics, vol. 219. Springer, Berlin (1971)

    Book  Google Scholar 

  2. Alt, H.W.: Verzweigungspunkte von H-Flächen. I. Math. Z. 127, 333–362 (1972)

    Article  MathSciNet  Google Scholar 

  3. Alt, H.W.: Verzweigungspunkte von H-Flächen. II. Math. Ann. 201, 33–55 (1973)

    Article  MathSciNet  Google Scholar 

  4. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 9(36), 235–249 (1957)

    MathSciNet  MATH  Google Scholar 

  5. Cheng, S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51(1), 43–55 (1976)

    Article  MathSciNet  Google Scholar 

  6. Dierkes, U., Hildebrandt, F., Sauvigny, F.: Minimal Surfaces, volume 339 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Heidelberg (2010). With assistance and contributions by A Küster and R Jakob

    Google Scholar 

  7. Dierkes, U., Hildebrandt, S., Tromba, A.J.: Global Analysis of Minimal Surfaces, Volume 341 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2010)

    Google Scholar 

  8. Gulliver II, R.D.: Regularity of minimizing surfaces of prescribed mean curvature. Ann. Math. 2(97), 275–305 (1973)

    Article  MathSciNet  Google Scholar 

  9. Gulliver II, R.D., Osserman, R., Royden, H.L.: A theory of branched immersions of surfaces. Am. J. Math. 95, 750–812 (1973)

    Article  MathSciNet  Google Scholar 

  10. Hartman, P., Wintner, A.: On the local behavior of solutions of non-parabolic partial differential equations. Am. J. Math. 75, 449–476 (1953)

    Article  MathSciNet  Google Scholar 

  11. Jost, J.: Harmonic mappings. In: Ji, L., Li, P., Schoen, R., Simon, L. (eds.) Handbook of Geometric Analysis. Volume 7 of Advanced Lectures in Mathematics, vol. 1, pp. 147–194. International Press of Boston, Boston (2008)

    Google Scholar 

  12. Jost, J., Yau, S.T.: Harmonic mappings and Kähler manifolds. Math. Ann. 262(2), 145–166 (1983)

    Article  MathSciNet  Google Scholar 

  13. McDuff, D., Salamon, D.: \(J\)-Holomorphic curves and symplectic topology, volume 52 of American Mathematical Society Colloquium Publications, 2nd edn. American Mathematical Society, Providence, RI (2012)

    MATH  Google Scholar 

  14. Micallef, M.J., White, B.: The structure of branch points in minimal surfaces and in pseudoholomorphic curves. Ann. Math. 141(1), 35–85 (1995)

    Article  MathSciNet  Google Scholar 

  15. Moore, J.D.: Bumpy metrics and closed parametrized minimal surfaces in Riemannian manifolds. Trans. Am. Math. Soc. 358(12), 5193–5256 (2006)

    Article  MathSciNet  Google Scholar 

  16. Moore, J.D.: Introduction to Global Analysis, Volume 187 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2017). Minimal surfaces in Riemannian manifolds

    Book  Google Scholar 

  17. Nitsche, J.C.C.: Plateau’s problems and their modern ramifications. Am. Math. Month. 81, 945–968 (1974)

    Article  MathSciNet  Google Scholar 

  18. Osserman, R.: A proof of the regularity everywhere of the classical solution to Plateau’s problem. Ann. Math. 2(91), 550–569 (1970)

    Article  MathSciNet  Google Scholar 

  19. Sampson, J.H.: Some properties and applications of harmonic mappings. Ann. Sci. École Norm. Sup. 11(2), 211–228 (1978)

    Article  MathSciNet  Google Scholar 

  20. Strebel, K.: Quadratic Differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5. Springer, Berlin (1984)

    Google Scholar 

  21. Wood, J.C.: Harmonic maps between surfaces. Ph.D. Thesis. University of Warwick (1974)

  22. Wood, J.C.: Singularities of harmonic maps and applications of the Gauss–Bonnet formula. Am. J. Math. 99(6), 1329–1344 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many thanks to Vlad Markovic for encouragement and sharing helpful ideas. I would also like to thank John Wood and Jürgen Jost for comments on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Sagman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagman, N. A Factorization Theorem for Harmonic Maps. J Geom Anal 31, 11714–11740 (2021). https://doi.org/10.1007/s12220-021-00699-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00699-w

Keywords

Mathematics Subject Classification

Navigation