Skip to main content
Log in

Protecting the entanglement of two interacting atoms in a cavity by quantum Zeno dynamics

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamics of atom–atom entanglement inside a single-mode cavity using quantum Zeno dynamics (QZD). The system under study consists of two two-level atoms with dipole–dipole and Ising interactions. By applying QZD, based on strong continuous coupling, we study the possibility of generating atom–atom entanglement in terms of different initial states. Furthermore, we control the dynamics of atom–atom entanglement in different quantum Zeno regimes. To show its efficiency, we compare the entanglement dynamics under QZD to free evolution. We show that in comparison with free evolution of a system, QZD not only does restrict the dynamics in the subspace where the system is initially prepared, but also preserves entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The work is a theoretical study and it doesn’t need any experimental data, therefore there is no external data associated with the manuscript.]

References

  1. D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information (Springer, Berlin, 2000)

    MATH  Google Scholar 

  2. E. Knill, R. Laflamme, L. Viola, ibid. 84, 2525 (2000)

  3. S. Mancini, J. Wang, Eur. Phys. J. D 32, 257 (2005)

    Article  ADS  Google Scholar 

  4. M. Rafiee, A. Nourmandipour, S. Mancini, Phys. Rev. A 94, 012310 (2016)

    Article  ADS  Google Scholar 

  5. M. Rafiee, A. Nourmandipour, S. Mancini, Phys. Rev. A 96, 012340 (2017)

    Article  ADS  Google Scholar 

  6. M. Rafiee, A. Nourmandipour, S. Mancini, Phys. Lett. A 384, 126748 (2020)

    Article  MathSciNet  Google Scholar 

  7. H. Wiseman, S. Mancini, J. Wang, Phys. Rev. A 66, 013807 (2002)

    Article  ADS  Google Scholar 

  8. P.W. Shor, Phys. Rev. A 52, R 2493 (1995)

  9. A. Steane, Proc. R. Soc. Lond. Ser. A 452, 2551 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Viola, S. Lloyd, Phys. Rev. A 58, 2733 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Vitali, P. Tombesi, Phys. Rev. A 59, 4178 (1999)

    Article  ADS  Google Scholar 

  13. M.A. Fasihi, Ann. Phys. 364, 274 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.A. Fasihi, B. Mojaveri, Quantum Inf. Process. 18, 75 (2019)

    Article  ADS  Google Scholar 

  15. A. Beskow, J. Nilsson, Arkiv fur Fys. 34, 561 (1967)

    Google Scholar 

  16. B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977)

    Article  ADS  Google Scholar 

  17. P. Facchi, S. Pascazio, Phys. Rev. Lett. 89, 080401 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. X.Q. Shao, H.F. Wang, L. Chen, S. Zhang, Y.F. Zhao, K.H. Yeon, J. Opt. Soc. Am. 26, 2440 (2009)

    Article  ADS  Google Scholar 

  19. M.F. Chen, Y.F. Chen, S.S. Ma, Quantum Inf. Process. 15, 1469 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.D. Franson, B.C. Jacobs, T.B. Pittman, Phys. Rev. A 70, 062302 (2004)

    Article  ADS  Google Scholar 

  21. P. Facchi, D.A. Lidar, S. Pascazio, Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  22. L. Xiao, J.A. Jones, Phys. Lett. A 359, 424 (2006)

    Article  ADS  Google Scholar 

  23. I.K. Kominis, Phys. Lett. A 372, 29 (2008)

    Article  Google Scholar 

  24. Y. Matsuzaki, S. Saito, K. Kakuyanagi, K. Semba, Phys. Rev. B 82, 180518 (2010)

    Article  ADS  Google Scholar 

  25. H. Nakazato, M. Unoki, K. Yuasa, Phys. Rev. A 70, 012303 (2004)

    Article  ADS  Google Scholar 

  26. J. Paavola, S. Maniscalco, Phys. Rev. A 82, 012114 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. P. Facchi, S. Pascazio, J. Phys. A Math. Theor. 41, 493001 (2008)

    Article  Google Scholar 

  28. P. Facchi, G. Marmo, S. Pascazio, J. Phys. Conf. Ser. 196, 012017 (2009)

    Article  Google Scholar 

  29. Y.Q. Ji, X.Q. Shao, X.X. Yi, Sci. Rep. 7, 1378 (2017)

    Article  ADS  Google Scholar 

  30. F. Schafer, I. Herrera, S. Cherukattil, C. Lovecchio, F.S. Cataliotti, F. Caruso, A. Smerzi, Nat. Commun. 5, 3194 (2014)

    Article  ADS  Google Scholar 

  31. J.M. Raimond, C. Sayrin, S. Gleyzes, I. Dotsenko, M. Brune, S. Haroche, P. Facchi, S. Pascazio, Phys. Rev Lett. 105, 213601 (2010)

    Article  ADS  Google Scholar 

  32. J.M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, Phys. Rev. A 86, 032120 (2012)

    Article  ADS  Google Scholar 

  33. M.A. Fasihi, Phys. Scr. 94, 085104 (2019)

    Article  ADS  Google Scholar 

  34. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Babak Dastmalchi for several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fasihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasihi, M.A., Khanzadeh, M., Hasanzadeh, P. et al. Protecting the entanglement of two interacting atoms in a cavity by quantum Zeno dynamics. Eur. Phys. J. D 75, 160 (2021). https://doi.org/10.1140/epjd/s10053-021-00168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00168-7

Navigation