Skip to main content
Log in

Comparative study of Sr\(_{2}\text {Fe}_{3}\text {Ch}_{2}\text {O}_{3}\)(Ch=S, Se): 2-D AFM spin S = 2 ladder systems

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a microscopic study of the electronic and magnetic properties of the spin ladder systems Sr\(_{2}\)Fe\(_{3}\)Ch\(_{2}\)O\(_{3}\) (Ch=S, Se) based on density functional calculations and on ab initio-derived effective models. We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. Although both compounds have similar crystal structures, the values of magnetic exchange interactions are slightly greater for S compound than Se compound. A microscopic modelling based on analysis of the electronic structure of these systems put Sr\(_{2}\)Fe\(_{3}\)Ch\(_{2}\)O\(_{3}\) (Ch=S, Se) in the interesting class of 2-D AFM spin, S = 2 ladder systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: First of all, this is a purely computational work, and all the data (processed) related to this work is already provided in the form of figures and tables within this article. Only raw data are kept with the authors. Because of this, we chose this option of no data/data will not be deposited while submitting the manuscript.].

References

  1. E. Dagotto, T.M. Rice, Science 271, 618 (1996)

    Article  ADS  Google Scholar 

  2. G.S. Uhrig, H.J. Schulz, Phys. Rev. B 54, R9624 (1996)

    Article  ADS  Google Scholar 

  3. H. Bethe, Z. Phys. 71, 205 (1931)

    Article  ADS  Google Scholar 

  4. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Rahaman, S. Kar, A. Vasiliev, T. Saha-Gasgupta, Phys. Rev. B 98, 144412 (2018)

    Article  ADS  Google Scholar 

  6. Y. Sasago, M. Hase, K. Uchinokura, M. Tokunaga, N. Miura, Phys. Rev. B 52, 3533 (1995)

    Article  ADS  Google Scholar 

  7. M. Nishi, O. Fujita, J. Akimitsu, Phys. Rev. B 50, 6508 (1994)

    Article  ADS  Google Scholar 

  8. R.M. Morra, W.J.L. Buyers, R.L. Armstrong, K. Hirakawa, Phys. Rev. B 38, 543 (1988)

    Article  ADS  Google Scholar 

  9. M. Azuma, Z. Hiroi, M. Takano, K. Ishida, Y. Kitaoka, Phys. Rev. Lett. 73, 3463 (1994)

    Article  ADS  Google Scholar 

  10. M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, K. Kinoshita, J. Phys. Soc. Jpn. 65, 2764 (1996)

    Article  ADS  Google Scholar 

  11. C. Mennerich, H. H. Klauss, M. Broekelmann, F. J. Litterst, C. Golze, R. Klingeler, V. Kataev, B. Büchner, S. N. Grossjohann, W. Brenig, M. Goiran, H. Rakoto, J. M. Broto, O. Kataeva, D. J. Price, Phys. Rev. B 73, 174415 (2006)

  12. K.T. Lai, M. Valldor, Sci. Rep 7, 43767 (2017)

    Article  ADS  Google Scholar 

  13. K.T. Lai, P. Adler, Y. Prots, Z. Hu, C.Y. Kuo, T.W. Pi, M. Valldor, Inorg. Chem. 56, 12606 (2017)

    Article  Google Scholar 

  14. M. Valldor, O. Heyer, A.C. Komarek, A. Senyshyn, M. Braden, T. Lorenz, Phys. Rev. B 83, 024418 (2011)

    Article  ADS  Google Scholar 

  15. S. Huh, Y. Ports, P. Adler, L.H. Tjeng, M. Valldor, Eur. J. Inorg. Chem 2982, (2015)

  16. H. Guo, M.T. Fernández-Díaz, A.C. Komarek, S. Huh, P. Adler, M. Valldor, Eur. J. Ionrg. Chem 32, 3829 (2017)

    Article  Google Scholar 

  17. K. To Lai, P. Adler, Y. Prots, Z. Hu, C.-Y. Kuo, T.-W. Pi, M. Valldor. Inorg. Chem. 56, 12606–12614 (2017)

  18. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  21. O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)

    Article  ADS  Google Scholar 

  22. Vladimir I. Anisimov, Jan Zaanen, Ole K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  23. H.J. Xiang et al., Phys. Rev. B 84, 224429 (2011)

    Article  ADS  Google Scholar 

  24. J. Kanamori, J. Phys. Chem. Sol. 10, 87 (1959)

    Article  ADS  Google Scholar 

  25. J.B. Goodenough, Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge DSTBT, Govt. of West Bengal for support of Basic Research through Grant vide Memo No. 463(Sanc.)/ST/P/S&T/16G-5/2018 dated 14/03/2019. We also acknowledge the support of the Aliah University for providing the computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

BR is solely responsible for the problem formulation, direction, data analysis and wrote the manuscript. DK has performed the first principle calculation, specially magnetic properties of these systems using VASP. AI has performed the structural analysis. JA has also performed the first principle calculation, specially electronic properties of these systems using LMTO.

Corresponding author

Correspondence to Badiur Rahaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, B., Khanam, D., Iqbal, A. et al. Comparative study of Sr\(_{2}\text {Fe}_{3}\text {Ch}_{2}\text {O}_{3}\)(Ch=S, Se): 2-D AFM spin S = 2 ladder systems. Eur. Phys. J. B 94, 109 (2021). https://doi.org/10.1140/epjb/s10051-021-00109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00109-8

Navigation