Skip to main content
Log in

Cluster realizations of Weyl groups and higher Teichmüller theory

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

For a symmetrizable Kac–Moody Lie algebra \({\mathfrak {g}}\), we construct a family of weighted quivers \(Q_m({\mathfrak {g}})\) (\(m \ge 2\)) whose cluster modular group \(\Gamma _{Q_m({\mathfrak {g}})}\) contains the Weyl group \(W({\mathfrak {g}})\) as a subgroup. We compute explicit formulae for the corresponding cluster \({{\mathcal {A}} }\)- and \({{\mathcal {X}} }\)-transformations. As a result, we obtain green sequences and the cluster Donaldson–Thomas transformation for \(Q_m({\mathfrak {g}})\) in a systematic way when \({\mathfrak {g}}\) is of finite type. Moreover if \({\mathfrak {g}}\) is of classical finite type with the Coxeter number h, the quiver \(Q_{kh}({\mathfrak {g}})\) (\(k \ge 1\)) is mutation-equivalent to a quiver encoding the cluster structure of the higher Teichmüller space of a once-punctured disk with 2k marked points on the boundary, up to frozen vertices. This correspondence induces the action of direct products of Weyl groups on the higher Teichmüller space of a general marked surface. We finally prove that this action coincides with the one constructed in Goncharov and Shen (Adv Math 327:225–348, 2018) from the geometrical viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. This is first announced in [11, §1.16, Example (2)], and an explicit construction is given in [25, §10].

  2. Goncharov–Shen gave a full construction for any semisimple Lie algebra \({\mathfrak {g}}\) in [25].

  3. This conjecture is confirmed in [25] for any semisimple Lie algebra \({\mathfrak {g}}\).

  4. Although not needed in this paper, it is sometimes useful to pick a lift \({{\mathcal {A}} }_\Lambda \rightarrow {{\mathcal {X}} }_\Lambda \) of the ensemble map. See, for instance, [21, 25].

  5. We thank the referee for pointing out this relation. The proof here requires much less computation than the original version.

  6. To be more precise, Berenstein–Fomin–Zelevinsky proved the existence of upper cluster algebra structures on the coordinate algebras of double Bruhat cells in [6]. See [16, Appendix B] for a procedure of obtaining a result concerning \({\mathbb {C}}[U^-_{*}]\) from [6].

References

  1. Assem, I., Schiffler, R., Shramchenko, V.: Cluster automorphisms. Proc. Lond. Math. Soc. (3) 104(6), 1271–1302 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bédard, R.: On commutation classes of reduced words in Weyl groups. Eur. J. Comb. 20(6), 483–505 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bucher, E.: Maximal green sequences for cluster algebras associated to orientable surfaces with empty boundary. Arnold Math. J. 2(4), 487–510 (2016)

    Article  MathSciNet  Google Scholar 

  4. Brüstle, T., Dupont, G., Pérotin, M.: On maximal green sequences. Int. Math. Res. Not. IMRN 16, 4547–4586 (2014)

    Article  MathSciNet  Google Scholar 

  5. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122(1), 49–149 (1996)

    Article  MathSciNet  Google Scholar 

  6. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bershtein, M., Gavrylenko, P., Marshakov, A.: Cluster integrable systems, \(q\)-Painlevé equations and their quantization. J. High Energy Phys. 77(2), 1–34 (2018)

    MATH  Google Scholar 

  8. Bernšteĭn, J., Gel’fand, I., Ponomarev, V.: Coxeter functors, and Gabriel’s theorem. Uspehi Mat. Nauk 28(2), 19–33 (1973)

    MathSciNet  MATH  Google Scholar 

  9. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72(1), 128–166 (1997)

    Article  MathSciNet  Google Scholar 

  10. Cao, P., Huang, M., Li, F.: A conjecture on \(C\)-matrices of cluster algebras. Nagoya Math. J. 238, 37–46 (2020)

    Article  MathSciNet  Google Scholar 

  11. Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006)

    Article  Google Scholar 

  12. Fock, V.V., Goncharov, A.B.: Cluster \({\cal{X}}\)-Varieties, Amalgamation and Poisson–Lie Groups, Algebraic Geometry and Number Theory, volume 253 of Mathematical Programming, pp. 27–68. Birkhäuser, Boston (2006)

    Google Scholar 

  13. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009)

    Article  MathSciNet  Google Scholar 

  14. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175(2), 223–286 (2009)

    Article  MathSciNet  Google Scholar 

  15. Fock, V.V., Goncharov, A.B.: Cluster Poisson varieties at infinity. Selecta Math. (N.S.) 22(4), 2569–2589 (2016)

    Article  MathSciNet  Google Scholar 

  16. Fujita, N., Oya, H.: Newton–Okounkov polytopes of Schubert varieties arising from cluster structures. arXiv:2002.09912

  17. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    Article  MathSciNet  Google Scholar 

  18. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12(2), 335–380 (1999)

    Article  MathSciNet  Google Scholar 

  19. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  Google Scholar 

  20. Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007)

    Article  MathSciNet  Google Scholar 

  21. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)

    Article  MathSciNet  Google Scholar 

  22. Goncharov, A.B., Kenyon, R.: Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4) 46(5), 747–813 (2013)

    Article  MathSciNet  Google Scholar 

  23. Goncharov, A.B., Shen, L.: Geometry of canonical bases and mirror symmetry. Invent. Math. 202(2), 487–633 (2015)

    Article  MathSciNet  Google Scholar 

  24. Goncharov, A.B., Shen, L.: Donaldson–Thomas transformations of moduli spaces of \(G\)-local systems. Adv. Math. 327, 225–348 (2018)

    Article  MathSciNet  Google Scholar 

  25. Goncharov, A.B., Shen, L.: Quantum geometry of moduli spaces of local systems and representation theory. arXiv:1904.1049

  26. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, 29, xii+204 pp. Cambridge University Press, Cambridge (1990)

  27. Hikami, K., Inoue, R.: Braids, complex volume, and cluster algebra. Algebraic Geom. Topol. 15, 2175–2194 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ip, I.C.H.: Cluster realization of \(U_q({\mathfrak{g}})\) and factorizations of the universal \(R\)-matrix. Selecta Math. (N.S.) 24(5), 4461–4553 (2018)

    Article  MathSciNet  Google Scholar 

  29. Inoue, R., Iyama, O., Keller, B., Kuniba, A., Nakanishi, T.: Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: type \(B_r\). Publ. Res. Inst. Math. Sci. 49(1), 1–42 (2013)

    Article  MathSciNet  Google Scholar 

  30. Inoue, R., Lam, T., Pylyavskyy, P.: On the cluster nature and quantization of geometric \(R\)-matrices. Publ. Res. Inst. Math. Sci. 55(1), 25–78 (2019)

    Article  MathSciNet  Google Scholar 

  31. Jantzen, J.C.: Representations of Algebraic Groups. Mathematical Surveys and Monographs, vol. 107, 2nd edn., xiv+576 pp. American Mathematical Society, Providence, RI (2003)

  32. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3ed edn., xxii+400 pp. Cambridge University Press, Cambridge (1990)

  33. Keller, B.: On Cluster Theory and Quantum Dilogarithm Identities. Representations of Algebras and Related Topics, pp. 85–116, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2011)

  34. Le, I.: Cluster structure on higher Teichmüller spaces for classical groups. Forum Math. Sigma 7, e13 (2019)

    Article  Google Scholar 

  35. Le, I.: An approach to higher Teichmüller spaces for general groups. Int. Math. Res. Not. IMRN 16, 4899–4949 (2019)

    Article  Google Scholar 

  36. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  Google Scholar 

  37. Lusztig, G.: Introduction to Quantum Groups. Reprint of the 1994 edition, Modern Birkhäuser Classics, xiv+346 pp. Birkhäuser/Springer, New York (2010)

  38. Muller, G.: The existence of a maximal green sequence is not invariant under quiver mutation. Electron. J. Comb. 23(2), 23 (2016)

    Article  MathSciNet  Google Scholar 

  39. Nakanishi, T.: Synchronicity phenomenon in cluster patterns. J. Lond. Math. Soc. (2021). https://doi.org/10.1112/jlms.12402

    Article  MathSciNet  MATH  Google Scholar 

  40. Nakanishi, T., Zelevinsky, A.: On Tropical Dualities in Cluster Algebras. Algebraic Groups and Quantum Groups, Contemporary Mathematics, vol. 565, pp. 217–226. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  41. Okubo, N., Suzuki, T.: Generalized \(q\)-Painlevé VI systems of type \((A_{2n+1}+A_1+A_1)^{(1)}\) arising from cluster algebra. Int. Math. Res. Not. IMRN (2020). https://doi.org/10.1093/imrn/rnaa283

    Article  Google Scholar 

  42. Schrader, G., Shapiro, A.: A cluster realization of \(U_q(\mathfrak{sl}_n)\) from quantum character varieties. Invent. Math. 216(3), 799–846 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mikhail Bershtein, Pavlo Gavrylenko, Ivan Ip, Bernhard Keller, Yoshiyuki Kimura, Ian Le, Mykola Semenyakin, Gus Schrader, Sasha Shapiro and Linhui Shen for valuable discussions. T. I. would like to express his gratitude to his supervisor Nariya Kawazumi for his continuous encouragement. He also wish to thank the Université de Strasbourg, where a part of this paper was written, and Vladimir Fock for his illuminating advice and hospitality. The authors are also grateful to the anonymous referee for their careful reading and incisive comments. This work was partly done when H.O. was a postdoctoral researcher at Université Paris Diderot. He is greatly indebted to David Hernandez for his encouragement and hospitality. R. I. is supported by JSPS KAKENHI Grant Number 16H03927. T. I. is supported by JSPS KAKENHI Grant Number 18J13304 and the Program for Leading Graduate Schools, MEXT, Japan. H.O. was supported by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement number 647353 Qaffine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Ishibashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Description of functions on \(\mathop {\mathrm {Conf}}\nolimits _3{\mathcal {A}}_G\)

Appendix A. Description of functions on \(\mathop {\mathrm {Conf}}\nolimits _3{\mathcal {A}}_G\)

In this appendix, we describe the composite morphism

$$\begin{aligned} {\widetilde{\beta }}:H\times H\times U^-_{*}\overset{\beta }{\rightarrow } \mathop {\mathrm {Conf}}\nolimits _3^{*}{{\mathcal {A}} }_G\hookrightarrow \mathop {\mathrm {Conf}}\nolimits _3{{\mathcal {A}} }_G \end{aligned}$$

in terms of the regular functions on these spaces. We can use this observation to derive the description of cluster \({{\mathcal {A}} }\)-coordinates on the configuration space \(\mathop {\mathrm {Conf}}\nolimits _3 {{\mathcal {A}} }_G\) (in particular, the data \(\mu _{s, i}\)) in Theorem 5.14 from Le’s paper [34] (See Remark A.4).

Let \({\mathbb {C}}[G]\) be the coordinate algebra of the semisimple simply-connected algebraic group G over \({\mathbb {C}}\). Then \({\mathbb {C}}[G]\) is considered as a \(G\times G\)-module by

$$\begin{aligned} ((g_1, g_2).F)(g):=F\big (g_1^Tgg_2\big ) \end{aligned}$$

for \(g, g_1, g_2\in G\), \(F\in {\mathbb {C}}[G]\). Note that, for \(f\in V^{*}\), \(u\in V\) and \(g_1, g_2\in G\),

$$\begin{aligned} (g_1, g_2). c_{f, u}^V=c_{g_1.f, g_2.u}^V. \end{aligned}$$

Definition A.1

For \(\lambda \in P_+\), set

$$\begin{aligned} V^-(\lambda ):=\big \{c_{f,v_{w_0\lambda }}^{\lambda }\mid f\in V(\lambda )^{*}\big \}. \end{aligned}$$

Then \(V(\lambda )\rightarrow V^-(\lambda ), u\mapsto c_{u^{\vee },v_{w_0\lambda }}^{\lambda }\) gives an isomorphism of \(G(\simeq G\times 1)\)-modules. Set

$$\begin{aligned} {\mathbb {C}}[{{\mathcal {A}} }_G]:={\mathbb {C}}[G]^{1\times U^-}=\bigoplus _{\lambda \in P_{+}}V^-(\lambda ). \end{aligned}$$

Then \({\mathbb {C}}[{{\mathcal {A}} }_G]\) is a \({\mathbb {C}}\)-subalgebra of \({\mathbb {C}}[G]\) and the elements of \({\mathbb {C}}[{{\mathcal {A}} }_G]\) determine well-defined functions on \({{\mathcal {A}} }_G\). Hence the elements of

$$\begin{aligned} ({\mathbb {C}}[G]^{1\times U_-})^{\otimes 3}=\bigoplus _{\lambda , \mu , \nu \in P_{+}}V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu ) \end{aligned}$$

give well-defined functions on \({\mathcal {A}}_G\times {\mathcal {A}}_G\times {\mathcal {A}}_G\). Set

$$\begin{aligned} {\mathbb {C}}[\mathop {\mathrm {Conf}}\nolimits _3{\mathcal {A}}_G]:=\bigoplus _{\lambda , \mu , \nu \in P_{+}}(V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu ))^{\Delta G}, \end{aligned}$$

here \(\Delta G\) is the diagonal subgroup of \(G\times G\times G\), which is isomorphic to G. Then \({\mathbb {C}}[\mathop {\mathrm {Conf}}\nolimits _3{\mathcal {A}}_G]\) is a \({\mathbb {C}}\)-subalgebra of \(({\mathbb {C}}[G]^{1\times U^-})^{\otimes 3}\) and the elements of \({\mathbb {C}}[\mathop {\mathrm {Conf}}\nolimits _3{\mathcal {A}}_G]\) determine well-defined functions on \(\mathop {\mathrm {Conf}}\nolimits _3{\mathcal {A}}_G\).

Now the morphism \({\widetilde{\beta }} :H\times H\times U^-_{*}\rightarrow \mathop {\mathrm {Conf}}\nolimits _3{\mathcal {A}}_G\) induces a \({\mathbb {C}}\)-algebra homomorphism

$$\begin{aligned} {\widetilde{\beta }}^{*}:{\mathbb {C}}[\mathop {\mathrm {Conf}}\nolimits _3({\mathcal {A}}_G)]\rightarrow {\mathbb {C}}[H\times H\times U^-_{*}] \end{aligned}$$

which is given by pull-back. We consider a description of the images of the elements of \((V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu ))^{\Delta G}\) under \({\widetilde{\beta }}^{*}\):

Theorem A.2

Let \(\lambda , \mu , \nu \in P_{+}\) and \(F\in (V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu ))^{\Delta G}\). Then

$$\begin{aligned} ({\widetilde{\beta }}^{*}(F))(h_1, h_2, u_-)=h_1^{\mu }s_G^{\mu }h_2^{\nu }s_G^{\nu }\langle f,u_-.v_{\nu }\rangle \end{aligned}$$
(A.1)

for \((h_1, h_2, u_-)\in H\times H\times U_-^{*}\), here \(f\in V(\nu )^{*}\) is uniquely determined by the expression

$$\begin{aligned} F=\Delta _{w_0\lambda , w_0\lambda }\otimes \Delta _{\mu , w_0\mu }\otimes c^{\nu }_{f,v_{w_0\nu }} + \sum _{i, j, k}c^{\lambda }_{f_{i},v_{w_0\lambda }}\otimes c^{\mu }_{f_{j},v_{w_0\mu }}\otimes c^{\nu }_{f_k,v_{w_0\nu }}, \end{aligned}$$
(A.2)

where \(f_i\), \(f_j\) in the second term of the right-hand side are weight vectors of \(V(\lambda )^{*}\), \(V(\mu )^{*}\), respectively, such that \(f_i\otimes f_j\not \in V(\lambda )_{w_0\lambda }^{*}\otimes V(\mu )_{\mu }^{*}\). In particular,

$$\begin{aligned} ({\widetilde{\beta }}^{*}(F))(h_1, h_2, u_-)=ah_1^{\mu }s_G^{\mu }h_2^{\nu }s_G^{\nu }\Delta _{-w_0\lambda -\mu , \nu }(u_-) \end{aligned}$$

if \(-w_0\lambda -\mu \in W({\mathfrak {g}})\cdot \nu \), here \(f=af_{-w_0\lambda -\mu }\in V(\nu )^{*}\) with \(a\in {\mathbb {C}}\).

Proof

We can regard F as a function on \({\mathcal {A}}_G\times {\mathcal {A}}_G\times {\mathcal {A}}_G\), denoted by \({\widehat{F}}\), because \((V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu ))^{\Delta G}\) is a subspace of \(V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu )\). Let \({\widehat{\beta }}\) be a morphism

$$\begin{aligned} H\times H\times U_-^{*}\rightarrow {\mathcal {A}}_G\times {\mathcal {A}}_G\times {\mathcal {A}}_G, (h_1, h_2, u_-)\mapsto (U^-, h_1\overline{w_0}U^-, u_-h_2\overline{w_0} U^-). \end{aligned}$$

Then we have

$$\begin{aligned} {\widehat{\beta }}^{*}({\widehat{F}})={\widetilde{\beta }}^{*}(F). \end{aligned}$$

We calculate the pull-back of the first term of (A.2) by \({\widehat{\beta }}\) and that of the second term separately. First,

$$\begin{aligned}&\left( {\widehat{\beta }}^{*}\left( \Delta _{w_0\lambda , w_0\lambda }\otimes \Delta _{\mu , w_0\mu }\otimes c^{\nu }_{f,v_{w_0\nu }}\right) \right) (h_1, h_2, u_-)\\&\quad =\left( \Delta _{w_0\lambda , w_0\lambda }\otimes \Delta _{\mu , w_0\mu }\otimes c^{\nu }_{f,v_{w_0\nu }}\right) (U^-, h_1\overline{w_0} U^-, u_-h_2\overline{w_0} U^-)\\&\quad =\langle f_{w_0\lambda }, v_{w_0\lambda }\rangle \langle f_{\mu }, h_1\overline{w_0}. v_{w_0\mu }\rangle \langle f, u_-h_2\overline{w_0}. v_{w_0\nu }\rangle \\&\quad =s_G^{\mu }s_G^{\nu }\langle f_{\mu }, h_1. v_{\mu }\rangle \langle f, u_-h_2. v_{\nu }\rangle \\&\quad =h_1^{\mu }s_G^{\mu }h_2^{\nu }s_G^{\nu }\langle f,u_-.v_{\nu }\rangle . \end{aligned}$$

Next, we have

$$\begin{aligned}&\left( {\widehat{\beta }}^{*}\left( \sum _{i, j, k}c^{\lambda }_{f_{i},v_{w_0\lambda }}\otimes c^{\mu }_{f_{j},v_{w_0\mu }}\otimes c^{\nu }_{f_k,v_{w_0\nu }}\right) \right) (h_1, h_2, u_-)\\&\quad =\left( \sum _{i, j, k}c^{\lambda }_{f_{i},v_{w_0\lambda }}\otimes c^{\mu }_{f_{j},v_{w_0\mu }}\otimes c^{\nu }_{f_k,v_{w_0\nu }}\right) (U^-, h_1\overline{w_0} U^-, u_-h_2\overline{w_0} U^-)\\&\quad =\sum _{i, j, k}\langle f_{i},v_{w_0\lambda }\rangle \langle f_{j},h_1\overline{w_0}. v_{w_0\mu }\rangle \langle f_k, u_- h_2\overline{w_0}.v_{w_0\nu }\rangle \\&\quad =\sum _{i, j, k}h_1^{\mu }s_G^{\mu }\langle f_{i},v_{w_0\lambda }\rangle \langle f_{j},v_{\mu }\rangle \langle f_k, u_- h_2\overline{w_0}.v_{w_0\nu }\rangle \\&\quad =0, \end{aligned}$$

here the last equality follows from our assumption on \(f_{i}\) and \(f_{j}\). These calculations complete the proof of (A.1). The second statement in the theorem follows from (A.1) and the fact that \(f\in V(\nu )_{-w_0\lambda -\mu }^{*}\). \(\square \)

Remark A.3

If one of \(\lambda , \mu \) or \(\nu \) is equal to 0, then \(\tau _1+w_0\tau _2=0\), where \(\{\tau _1, \tau _2\}=\{\lambda , \mu ,\nu \}{\setminus }\{0\}\) as far as \((V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu ))^{\Delta G}\ne 0\). Note that, in this case, the condition \(-w_0\lambda -\mu \in W({\mathfrak {g}})\cdot \nu \) is satisfied.

Remark A.4

The case-by-case checking shows that Le’s cluster \({{\mathcal {A}} }\)-coordinates on the configuration space \(\mathop {\mathrm {Conf}}\nolimits _3 {{\mathcal {A}} }_G\) are chosen from the space of the form \((V^-(\lambda )\otimes V^-(\mu )\otimes V^-(\nu ))^{\Delta G}\) whose weight datum \((\lambda , \mu , \nu )\) satisfies the condition \(-w_0\lambda -\mu \in W({\mathfrak {g}})\cdot \nu \). Hence, by Theorem A.2, the images of the cluster \({{\mathcal {A}} }\)-coordinates on \(\mathop {\mathrm {Conf}}\nolimits _3 {{\mathcal {A}} }_G\) under \({\widetilde{\beta }}^{*}\) are determined up to constant multiple only from the corresponding weight data \((\lambda , \mu , \nu )\).

Therefore, to obtain the description in Theorem 5.14, we only have to know the weight data \((\lambda , \mu , \nu )\) for the cluster \({{\mathcal {A}} }\)-coordinates on \(\mathop {\mathrm {Conf}}\nolimits _3 {{\mathcal {A}} }_G\) and their values at \({\widetilde{\beta }}(1, 1, u_-)\) for some \(u_-\in U^{*}_-\). The former can be read from [34, p.33 (1)–(4), p.85–86 (1)–(5), p.119–120 (1)–(4), p.121 (1)–(5), p.121–122 (1)–(5)] (see also [34, Observations 3.5 and 5.3]), and the latter can be derived from [34, Propositions 3.1, 4.7 and 5.7].

Remark A.5

In fact, the set of elements of \(V(\nu )^{*}\) which can appear as f in (A.2) is exactly equal to

$$\begin{aligned} \left\{ f\in V(\nu )_{-w_0\lambda -\mu }^{*}\Bigg |\begin{array}{l}f_s^{(k)}.f=0 \ \text { for all }k>\langle \alpha _s^{\vee }, -w_0\lambda \rangle , s\in S, \text { and}\\ e_s^{(k)}.f=0 \ \text { for all }k>\langle \alpha _s^{\vee }, \mu \rangle , s\in S\end{array}\right\} . \end{aligned}$$

We omit the proof of this fact since we do not use it in this paper. See, for example, [37, Proposition 31.2.6].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, R., Ishibashi, T. & Oya, H. Cluster realizations of Weyl groups and higher Teichmüller theory. Sel. Math. New Ser. 27, 37 (2021). https://doi.org/10.1007/s00029-021-00630-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00630-9

Mathematics Subject Classification

Navigation