Skip to main content
Log in

Hazards and Risks of Recreation Water Use: Vectors of International Studies. The Quality of Recreation Environments

  • HYDROCHEMISTRY, HYDROBIOLOGY, ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

English-language scientific publications regarding the assessment of hazards and risks in recreational water use have been generalized. International publication activity has been analyzed and mainstream and basic research lines of thematic studies have been identified. The results of studies of microbial pollution of water and sand on a beach, the behavior of microbial pathogens and their effect on the health of beach visitors, the hazard of blooming algae, sun, radiation, and estrogens for vacationers are briefly presented. Methods and technologies for assessing the pollution of beach media and the morbidity caused by swimming, as well as the promising lines of studying the effect of environmental factors on the fate of pollutants and transport of pollution in beach media are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Avakyan, A.B., Boichenko, V.K., and Saltankin, V.P., Recreation use of water objects in Moscow oblast: the state, problems, and perspectives, Vod. Resur., 1983, no. 6, pp. 125–133.

  2. Andreeva, I.V., Recreation water use in rivers: ecosystem security and hydrological safety, Izv. AO RGO, 2019, no. 3, pp. 5–16.

  3. Lantsova, I.V., Geoecological assessment and rational use of recreational potential of the coastal zones of reservoirs, Extended Abstract of Doctoral (Geogr.) Dissertation, Moscow: Water Problems Institute, Russian Academy of Sciences, 2009.

  4. Ahmad, A., Dada, A., and Usup, G., Application of multilocus sequence analysis for molecular characterization of enterococci with virulence factors recovered from a tropical recreational beach, Southeast Asian J. Tropical Med. Publ. Health, 2014, vol. 45, no. 3, pp. 700–710.

    Google Scholar 

  5. Ahmad, A., Zulkifli, A., and Usup, G., Detection of methicillin resistant Staphylococcus aureus (MRSA) isolated from Bagan Lalang recreational beach, Malaysia, Malaysian J. Microbiol., 2016, vol. 12, no. 2, pp. 171–176.

    Google Scholar 

  6. Ahmed, W., Harwood, V., Gyawali, P., et al., Comparison of concentration methods for quantitative detection of sewage-associated viral markers in environmental waters, Applied Environ. Microbiol., 2014, vol. 81, no. 6, pp. 2042–2049.

    Article  Google Scholar 

  7. Alm, E., Daniels-Witt, Q., Learman, D., et al., Potential for gulls to transport bacteria from human waste sites to beaches, Sci. Total Environ., 2019, vol. 615, pp. 123–130.

    Article  Google Scholar 

  8. Amini, K. and Kraatz, H., Recent advances and developments in monitoring biological agents in water samples, Rev. Environ. Sci. Biotechnol., 2015, vol. 14, no. 1, pp. 23–48.

    Article  Google Scholar 

  9. Anderson, S., Turner, S., and Lewis, G., Enterococci in the New Zealand environment: implications for water quality monitoring, Water. Sci. Technol., 1997, vol. 35, nos. 11–12, pp. 325–331.

    Article  Google Scholar 

  10. Andrade, V., Zampieri, B., Ballesteros, E., et al., Densities and antimicrobial resistance of Escherichia Coli isolated from marine waters and beach sands, Environ. Monit. Assess., 2015, vol. 187, no. 6, p. 342.

    Article  Google Scholar 

  11. Badgley, B., Thomas, F., and Harwood, V., Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation, Environ. Microbiol., 2011, vol. 13, no. 4, pp. 932–942.

    Article  Google Scholar 

  12. Bauer, L. and Alm, E., Escherichia coli toxin and attachment genes in sand at Great Lakes recreational beaches, J. Great Lakes Res., 2012, vol. 38, no. 1, pp. 129–133.

    Article  Google Scholar 

  13. Boehm, A., Enterococci concentrations in diverse coastal environments exhibit extreme variability, Environ. Sci. Technol., 2007, vol. 41, no. 24, pp. 8227–8232.

    Article  Google Scholar 

  14. Boehm, A., Yamahara, K., Love, D., et al., Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach, Environ. Sci. Technol., 2009, vol. 43, no. 21, pp. 8046–8052.

    Article  Google Scholar 

  15. Boer, S., Heinemeyer, E., Luden, K., et al., Temporal and spatial distribution patterns of potentially pathogenic vibrio spp. at recreational beaches of the German North Sea, Microbial Ecol., 2013, vol. 65, no. 4, pp. 1052–1067.

    Article  Google Scholar 

  16. Bofe, K., Hysko, M., and Agolli, B., Pollution of recreational beaches of Vlora Bay (Albania) assessed by microbiological tests, Acta Biochim. Pol., 2015, vol. 62, no. 4, pp. 659–661.

    Article  Google Scholar 

  17. Bonilla, T., Nowosielski, K., Cuvelier, M., et al., Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure, Marine Pollut. Bull., 2007, vol. 54, no. 9, pp. 1472–1482.

    Article  Google Scholar 

  18. Botes, M., de Kwaadstenie, M., and Cloete, T., Application of quantitative PCR for the detection of microorganisms in water, Anal. Bioanal. Chem., 2013, vol. 405, no. 1, pp. 91–108.

    Article  Google Scholar 

  19. Clark, A., Turner, T., Dorothy, K., et al., Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India, Ecotoxicol. Environ. Saf., 2003, vol. 56, no. 3, pp. 390–397.

    Article  Google Scholar 

  20. Coakley, E., Parris, A., Wyman, A., et al., Assessment of enterococcus levels in recreational beach sand along the Rhode Island coast, J. Environ. Health, 2016, vol. 78, no. 8, pp. 12–17.

    Google Scholar 

  21. Colford, J., Schiff, K., Griffith, J., et al., Using rapid indicators for enterococcus to assess the risk of illness after exposure to urban runoff contaminated marine water, Water Res., 2012, vol. 46, no. 7, pp. 2176–2186.

    Article  Google Scholar 

  22. Cordero, L., Norat, J., Mattei, H., et al., Seasonal variations in the risk of gastrointestinal illness on a tropical recreational beach, J. Water Health, 2012, vol. 10, no. 4, pp. 579–593.

    Article  Google Scholar 

  23. Cornwell, E., Goyette, J., Sorichetti, R., et al., Biological and chemical contaminants as drivers of change in the Great Lakes–St. Lawrence river basin, J. Great Lakes Res., 2015.

  24. Corsi, S., Borchardt, M., Carvin, R., et al., Human and bovine viruses and bacteria at three Great Lakes beaches: environmental variable associations and health risk, Environ. Sci. Technol., 2016, vol. 50, no. 2, pp. 987–995.

    Article  Google Scholar 

  25. Costa-Dias, S., Machado, A., Teixeira, C., et al., Urban estuarine beaches and urban water cycle seepage: the influence of temporal scales, Water, 2018, vol. 10, no. 2, p. 173.

    Article  Google Scholar 

  26. Dada, A., Ahmad, A., Usup, G., et al., Speciation and antimicrobial resistance of Enterococci isolated from recreational beaches in Malaysia, Environ. Monit. Assess., 2013, vol. 185, no. 2, pp. 1583–1599.

    Article  Google Scholar 

  27. Dada, A. and Hamilton, D., Predictive models for determination of E. coli concentrations at inland recreational beaches, Water Soil Pollut., 2016, vol. 227, no. 9, p. 347.

    Article  Google Scholar 

  28. Deng, Z., Namwamba, F., and Zhang, Z., Development of decision support system for managing and using recreational beaches, J. Hydroinf., 2014, vol. 16, no. 2, pp. 447–457.

    Article  Google Scholar 

  29. Dickinson, G., Lim, K., and Jiang, S., Quantitative microbial risk assessment of pathogenic vibrios in marine recreational waters of Southern California, Applied Environ. Microbiol., 2013, vol. 79, no. 1, pp. 294–302.

    Article  Google Scholar 

  30. Ebadi, A. and Hisoriev, H., Physicochemical characterization of sediments from Tajan River basin in the Northern Iran, Toxicol. Environ. Chem., 2018, vol. 100, nos. 5–7, pp. 540–549.

    Article  Google Scholar 

  31. Ebomah, K., Sibanda, T., Adefisoye, M., et al., Evaluating Nahoon beach and canal waters in Eastern Cape, South Africa: a public health concern, Polish J. Environ. Studies, 2019, vol. 28, no. 3, pp. 1115–1125.

    Article  Google Scholar 

  32. Enns, A., Vogel, L., Abdelzaher, A., et al., Spatial and temporal variation in indicator microbe sampling is influential in beach management decisions, Water Res., 2012, vol. 46, no. 7, pp. 2237–2246.

    Article  Google Scholar 

  33. Eregno, F., Tryland, I., Tjomsland, T., et al., Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events, Sci. Total Environ., 2016, vol. 548, pp. 270–279.

    Article  Google Scholar 

  34. Esiobu, N., Green, M., Echeverry, A., et al., High numbers of Staphylococcus aureus at three bathing beaches in South Florida, Int. J. Environ. Health Res., 2013, vol. 23, no. 1, pp. 46–57.

    Article  Google Scholar 

  35. Faja, O., Abd, Sharad, A., Younis, K., et al., Isolation, detection of virulence genes, antibiotic resistance genes, plasmid profile, and molecular typing among Vibrio parahaemolyticus isolated in Malaysian seawater from recreational beaches and fish, Vet. World, 2019, vol. 12, no. 7, pp. 1140–1149.

    Article  Google Scholar 

  36. Francy, D., Stelzer, E., Brady, A., et al., Comparison of filters for concentrating microbial indicators and pathogens in lake water samples, Appl. Environ. Microbiol., 2013, vol. 79, no. 4, pp. 1342–1352.

    Article  Google Scholar 

  37. Gast, R., Gorrell, L., Raubenheimer, B., et al., Impact of erosion and accretion on the distribution of enterococci in beach sands, Cont. Shelf Res., 2011, vol. 31, no. 14, pp. 1457–1461.

    Article  Google Scholar 

  38. Griffith, J., Weisberg, S., Arnold, B., et al., Epidemiologic evaluation of multiple alternate microbial water quality monitoring indicators at three California beaches, Water Res., 2016, vol. 94, pp. 371–381.

    Article  Google Scholar 

  39. Halliday, E., Griffith, J., and Gast, R., Use of an exogenous plasmid standard and quantitative PCR to monitor spatial and temporal distribution of Enterococcus spp. in beach sands, Limnol. Oceanogr.: Methods, 2010, vol. 8, pp. 146–154.

    Article  Google Scholar 

  40. Harikrishnan, N., Ravisankar, R., Chandrasekaran, A., et al., Assessment of gamma radiation and associated radiation hazards in coastal sediments of south east coast of Tamilnadu, India with statistical approach, Ecotoxicol. Environ. Safety, 2018, vol. 162, pp. 521–528.

    Article  Google Scholar 

  41. Haugland, R., Siefring, S., Lavender, J., et al., Influences of sample interference and interference controls on quantification of enterococci fecal indicator bacteria in surface water samples by the qPCR method, Water Res., 2012, vol. 46, no. 18, pp. 5989–6001.

    Article  Google Scholar 

  42. Herzog, A., Bhaduri, P., Stedtfeld, R., et al., Detection and occurrence of indicator organisms and pathogens, Water Environ. Res., 2010, vol. 82, no. 10, pp. 883–907.

    Article  Google Scholar 

  43. Horricks, R., Tabin, S., Edwards, J., et al., Organic ultraviolet filters in nearshore waters and in the invasive lionfish (Pterois Volitans) in Grenada, West Indies, PLoS One, 2019, vol. 14, no. 7.

  44. Hoyer, A., Schladow, S., and Rueda, F., A hydrodynamics-based approach to evaluating the risk of waterborne pathogens entering drinking water intakes in a large, stratified lake, Water Res., 2015, vol. 83, pp. 227–236.

    Article  Google Scholar 

  45. Hsu, T., Rea, C., Yu, Z., et al., Prevalence and diversity of Shiga toxin genes in Canada geese and water in western Lake Erie Region, J. Great Lakes Res., 2016, vol. 42, no. 2, pp. 476–481.

    Article  Google Scholar 

  46. Hughes, B., Beale, D., Dennis, P., et al., Cross-comparison of human wastewater-associated molecular markers in relation to fecal indicator bacteria and enteric viruses in recreational beach waters, Applied Environ. Microbiol., 2017, vol. 83, no. 8. p. e00028. https://doi.org/10.1128/AEM.00028

    Article  Google Scholar 

  47. Jin, M., Guo, X., and Wang, X., Development of a novel filter cartridge system with electropositive granule media to concentrate viruses from large volumes of natural surface water, Environ. Sci. Technol., 2014, vol. 48, no. 12, pp. 6947–6956.

    Article  Google Scholar 

  48. Kay, D., Bartram, J., Pruss, A., et al., Derivation of numerical values for the world health organization guidelines for recreational waters, Water Res., 2004, vol. 38, no. 5, pp. 1296–1304.

    Article  Google Scholar 

  49. Kim, H., Lee, J., Hur, D., et al., Modeling the transport and inactivation of enterococci in the swimming beach, J. Coastal Res., 2011, vol. 64, pp. 1078–1080.

    Google Scholar 

  50. King, D., Brenner, K., and Rodgers, M., A critical evaluation of a flow cytometer used for detecting enterococci in recreational waters, J. Water Health, 2007, vol. 5, no. 2, pp. 295–305.

    Article  Google Scholar 

  51. Kinzelman, J., Whitman, R., Byappanahalli, M., et al., Evaluation of beach grooming techniques on Escherichia coli density in Foreshore Sand at North Beach, Racine, WI, Lake Reservoir Manage., 2003, vol. 19, no. 4, pp. 349–354.

    Article  Google Scholar 

  52. Kleinheinz, G., McDermott, C., Leewis, M., et al., Influence of sampling depth on Escherichia coli concentrations in beach monitoring, Water Res., 2006, vol. 40, no. 20, pp. 3831–3837.

    Article  Google Scholar 

  53. Kuen, C., Kutarski, P., and Brunton, M., Contaminated marine wounds—the risk of acquiring acute bacterial-infection from marine recreational beaches, J. Appl. Bacteriol., 1992, vol. 73, no. 5, pp. 412–420.

    Article  Google Scholar 

  54. Lee, C., Lee, C., Marion, J., et al., Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow, Sci. Total Environ., 2014, vol. 472, pp. 757–766.

    Article  Google Scholar 

  55. Leon-Lopez, C., Arreola-Lizarraga, J., Padilla-Arredondo, G., et al., Temporal variability of enterococci and associated sources at three subtropical recreational beaches, Oceanol. Hidrobiol. Studies, 2014, vol. 47, no. 4, pp. 327–336.

    Article  Google Scholar 

  56. Levin-Edens, E., Meschke, J., and Roberts, M., Quantification of methicillin-resistant Staphylococcus aureus strains in marine and freshwater samples by the most-probable-number method, Appl. Environ. Microbiol., 2011, vol. 77, no. 10, pp. 3541–3543.

    Article  Google Scholar 

  57. Li, J. and Zhang, X., Beach pollution effects on health and productivity in California, Int. J. Environ. Res. Public Health, 1987, vol. 16, no. 11. p. 1987. https://doi.org/10.3390/ijerph16111987

    Article  Google Scholar 

  58. Lim, K., Shao, S., Peng, J., et al., Evaluation of the dry and wet weather recreational health risks in a semi-enclosed marine embayment in Southern California, Water Res., 2017, vol. 111, pp. 318–329.

    Article  Google Scholar 

  59. Love, D., Rodriguez, R., Gibbons, C., et al., Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA, J. Water Health, 2014, vol. 12, no. 1, pp. 136–150.

    Article  Google Scholar 

  60. Lu, J., Ryu, H., Vogel, J., et al., Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of Sandhill cranes (Grus canadensis) at the Central Platte River, Appl. Environ. Microbiol., 2013, vol. 79, no. 12, pp. 3762–3769.

    Article  Google Scholar 

  61. Maloo, A., Fulke, A., Mulani, N., et al., Pathogenic multiple antimicrobial resistant Escherichia coli serotypes in recreational waters of Mumbai, India: a potential public health risk, Environ. Sci. Poll. Res., 2017, vol. 24, no. 12, pp. 11504–11517.

    Article  Google Scholar 

  62. Manganelli, M., Blooms of toxic microorganisms in aquatic environments: marine microalgae and freshwater cyanobacteria. A brief review with a particular focus on the Italian situation diffusion and health effects of toxic marine microalgae and freshwater cyanobacteria in Italy, Rendiconti lincei-scienze fisiche e naturali, 2016, vol. 27, no. 1, pp. 135–143.

    Article  Google Scholar 

  63. Mansilha, C., Coelho, C., Reinas, A., et al., Salmonella: The forgotten pathogen: Health hazards of compliance with European Bathing Water Legislation, Mar. Pollut. Bull., 2010, vol. 60, no. 6, pp. 819–826.

    Article  Google Scholar 

  64. Marino, F., Martinezmanzanares, E., Morinigo, M., et al., Applicability of the recreational water-quality standard guidelines, Water Sci. Technol., 1995, vol. 31, nos. 5–6, pp. 27–31.

    Article  Google Scholar 

  65. Miao, J., Jiang, H., Yang, Z., et al., Assessment of an electropositive granule media filter for concentrating viruses from large volumes of coastal water, Environ. Sci.–Water Res. Technol., 2019, vol. 5, no. 2, pp. 325–333.

    Article  Google Scholar 

  66. Ming, H., Zhu, L., Feng, J., et al., Risk assessment of rotavirus infection in surface seawater from Bohai Bay, China, Hum. Ecol. Risk Assess., 2014, vol. 20, no. 4, pp. 92–940.

    Article  Google Scholar 

  67. Moehrie, M., Outdoor sports and skin cancer, Clinics Dermatol., 2008, vol. 26, no. 1, pp. 12–15.

    Article  Google Scholar 

  68. Molina, M., Hunter, S., Cyterski, M., et al., Factors affecting the presence of human-associated and fecal indicator real-time quantitative PCR genetic markers in urban-impacted recreational beaches, Water Res., 2014, vol. 64, pp. 196–208.

    Article  Google Scholar 

  69. Molloy, S., Liu, L., Phanikumar, M., et al., The presence and near-shore transport of human fecal pollution in Lake Michigan beaches, Oceans, 2005, vols. 1–3, pp. 1667–1672.

    Google Scholar 

  70. Napier, M., Haugland, R., Poole, C., et al., Exposure to human-associated fecal indicators and self-reported illness among swimmers at recreational beaches: a cohort study, Environ. Health, 2017, vol. 16, p. 103.

    Article  Google Scholar 

  71. Napier, M., Poole, C., Stewar, J., et al., Exposure to human-associated chemical markers of fecal contamination and self-reported illness among swimmers at recreational beaches, Environ. Sci. Technol., 2018, vol. 52, no. 13, pp. 7513–7523.

    Article  Google Scholar 

  72. Nevers, M. and Whitman, R., Efficacy of monitoring and empirical predictive modeling at improving public health protection at Chicago beaches, Water Res., 2011, vol. 45, no. 4, pp. 1659–1668.

    Article  Google Scholar 

  73. Park, Y., Kim, M., Pachepsky, Y., et al., Development of a nowcasting system using machine learning approaches to predict fecal contamination levels at recreational beaches in Korea, J. Environ. Qual., 2018, vol. 47, no. 5, pp. 1094–1102.

    Article  Google Scholar 

  74. Patz, J., Vavrus, S., Uejio, C., et al., Climate change and waterborne disease risk in the Great Lakes region of the US, Am. J. Prev. Med., 2008, vol. 35, no. 5, pp. 451–458.

    Article  Google Scholar 

  75. Phillips, M., Solo-Gabriele, H., Piggot, A., et al., Relationships between sand and water quality at recreational beaches, Water Res., 2011, vol. 45, no. 20, pp. 6763–6769.

    Article  Google Scholar 

  76. Piggot, A., Klaus, J., Johnson, S., et al., Relationship between Enterococcal levels and sediment biofilms at recreational beaches in South Florida, Applied Environ. Microbiol., 2012, vol. 78, no. 17, pp. 5973–5982.

    Article  Google Scholar 

  77. Pintar, K., Fazil, A., Pollari, F., et al., A risk assessment model to evaluate the role of fecal contamination in recreational water on the incidence of Cryptosporidiosis at the community level in Ontario, Risk Analysis, 2010, vol. 30, no. 1, pp. 49–64.

    Article  Google Scholar 

  78. Plano, L., Shibata, T., Garza, A., et al., Human-associated methicillin-resistant Staphylococcus aureus from a subtropical recreational marine beach, Microb. Ecol., 2013, vol. 65, no. 4, pp. 1039–1051.

    Article  Google Scholar 

  79. Pratap, P., Redman, S., Fagen, M., et al., Improving water quality communications at beaches: input from stakeholders, J. Water Health, 2013, vol. 11, no. 4, pp. 647–658.

    Article  Google Scholar 

  80. Regueiras, A., Saker, M., and Vasconcelos, V., Use of PCR for the early detection of pathogenic bacteria and cyanobacteria in water samples from different urban water sources (Porto, Portugal), Fresenius Environ. Bull., 2009, vol. 18, no. 12, pp. 2359–2365.

    Google Scholar 

  81. Reynolds, K., Roll, K., Fujioka, R., et al., Incidence of enteroviruses in Mamala Bay, Hawaii using cell culture and direct polymerase chain reaction methodologies, Can. J. Microbiol., 1998, vol. 44, no. 6, pp. 598–604.

    Article  Google Scholar 

  82. Roberts, M., Soge, O., and No, D., Comparison of multi-drug resistant environmental methicillin-resistant Staphylococcus aureus isolated from recreational beaches and high touch surfaces in built environments, Front. Microb., 2013, vol. 4, no. 74.

  83. Rocha, M., Cruzeiro, C., Ferreira, C., et al., Occurrence of endocrine disruptor compounds in the estuary of the Iberian Douro River and nearby Porto Coast (NW Portugal), Toxicol. Environ. Chem., 2012, vol. 94, no. 2, pp. 252–261.

    Article  Google Scholar 

  84. Rodrigues, V., Rivera, I., Lim, K., et al., Detection and risk assessment of diarrheagenic E-coli in recreational beaches of Brazil, Mar. Pollut. Bull., 2016, vol. 109, no. 1, pp. 163–170.

    Article  Google Scholar 

  85. Roegner, A., Truong, L., Weirich, C., et al., Combined Danio rerio embryo morbidity, mortality and photomotor response assay: A tool for developmental risk assessment from chronic cyanoHAB exposure, Sci. Total Environ., 2019, vol. 697, p. 134210. https://doi.org/10.1016/j.scitotenv.2019.134210

    Article  Google Scholar 

  86. Roslev, P., Bastholm, S., and Iversen, N., Relationship between fecal indicators in sediment and recreational waters in a Danish estuary, Water Air Soil Pollut., 2008, vol. 194, nos. 1–4, pp. 13–21.

    Article  Google Scholar 

  87. Roth, F., Lessa, G., Wild, C., et al., Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil), Mar. Pollut. Bull., 2016, vol. 106, nos. 1–2, pp. 43–48.

    Article  Google Scholar 

  88. Sabino, R., Rodrigues, R., Costa, I., et al., Routine screening of harmful microorganisms in beach sands: implications to public health, Sci. Total Environ., 2014, vol. 472, pp. 1062–1069.

    Article  Google Scholar 

  89. Sato, M., Di Bari, M., Lamparelli, C., et al., Sanitary quality of sands from marine recreational beaches of Sao Paulo, Brazil, Braz. J. Microbiol., 2005, vol. 36, no. 4, pp. 321–326.

    Article  Google Scholar 

  90. Schoen, M. and Ashbolt, N., Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches, Environ. Sci. Technol., 2010, vol. 44, no. 7, pp. 2286–2291.

    Article  Google Scholar 

  91. Shibata, T. and Solo-Gabriele, H., Quantitative microbial risk assessment of human illness from exposure to marine beach sand, Environ. Sci. Technol., 2012, vol. 46, no. 5, pp. 2799–2805.

    Article  Google Scholar 

  92. Solo-Gabriele, H., Harwood, V., Kay, D., et al., Beach sand and the potential for infectious disease transmission: observations and recommendations, J. Mar. Biol. Assoc. United Kingdom, 2016, vol. 96, no. 1, pp. 101–120.

    Article  Google Scholar 

  93. Steele, J., Blackwood, A., Griffith, J., et al., Quantification of pathogens and markers of fecal contamination during storm events along popular surfing beaches in San Diego, California, Water Res., 2018, vol. 136, pp. 137–149.

    Article  Google Scholar 

  94. Swinscoe, I., Oliver, D., Gilburn, A., et al., The seaweed fly (Coelopidae) can facilitate environmental survival and transmission of E-coli 0157 at sandy beaches, J. Environ. Management, 2018, vol. 223, pp. 275–285.

    Article  Google Scholar 

  95. Taylor, T. and Longo, A., Valuing algal bloom in the Black Sea coast of Bulgaria: a choice experiments approach, J. Environ. Manage., 2010, vol. 91, no. 10, pp. 1963–1971.

    Article  Google Scholar 

  96. Turkmen, C., Ayyildiz, O., Akbulut, M., et al., Microbial quality in coastal waters of Dardanelles in relation to the pollution sources and transport pathways, Clean Soil Air Water, 2012, vol. 40, no. 12, pp. 1320–1325.

    Article  Google Scholar 

  97. Vanderburgt, C., Dealing with contaminated dredged materials with reference to the Oslo Convention 1972 and the new Paris Convention 1992, Mar. Pollut. Bull., 1994, vol. 29, no. 6–12, pp. 296–299.

  98. Vogel, L., Edge, T., O’Carroll, D., et al., Evaluation of methods to sample fecal indicator bacteria in foreshore sand and pore water at freshwater beaches, Water Res., 2017, vol. 121, pp. 204–212.

    Article  Google Scholar 

  99. Web of Science [Elektronnyi resurs]. https://clarivate.ru/products/web-of-science. Accessed June 5, 2020.

  100. Whiley, H., Austin, J., Silva, G., et al., Fecal indicator bacteria present in sand at South Port Beach, South Australia, J. Coastal Res., 2018, vol. 34, no. 1, pp. 215–219.

    Article  Google Scholar 

  101. Whitman, R., Harwood, V., Edge, T., et al., Microbes in beach sands: integrating environment, ecology and public health, Rev. Environ. Sci. Bio-Technol., 2014, vol. 13, no. 3, pp. 329–368.

    Article  Google Scholar 

  102. Willmann, G., Ultraviolet keratitis: from the pathophysiological basis to prevention and clinical management, High Alt. Med. Biol., 2015, vol. 16, no. 4, pp. 277–282.

    Article  Google Scholar 

  103. Wong, M., Kumar, L., Jenkins, T., et al., Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker, Water Res., 2009, vol. 43, no. 4, pp. 1137–1149.

    Article  Google Scholar 

  104. Xagoraraki, I., Kuo, D., Wong, K., et al., Occurrence of human adenoviruses at two recreational beaches of the Great Lakes, Appl. Environ. Microbiol., 2007, vol. 73, no. 24, pp. 7874–7881.

    Article  Google Scholar 

  105. Yamahara, K., Walters, S., and Boehm, A., Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting, Appl. Environ. Microbiol., 2009, vol. 75, no. 6, pp. 1517–1524.

    Article  Google Scholar 

  106. Yau, V., Schiff, K., Arnold, B., et al., Effect of submarine groundwater discharge on bacterial indicators and swimmer health at Avalon Beach, Ca, USA, Water Res., 2014, vol. 59, pp. 23–36.

    Article  Google Scholar 

  107. Zhang, J., Qiu, H., Li, X., et al., Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach, Environ. Sci. Technol., 2018, vol. 52, no. 15, pp. 8446–8455.

    Article  Google Scholar 

  108. Zulkifli, A. and Ahmad, A., Detection of methicillin resistant Staphylococcus Aureus (MRSA) from recreational beach using the mecA Gene, AIP Conf. Proc., 2015, vol. 1678, no. 030011.

Download references

Funding

This study was carried out under Governmental Order to the Institute of Water and Environmental Problems, Siberian Branch, Russian Academy of Sciences, project no. 0306-2021-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Andreeva.

Additional information

Translated by G. Krichevets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, I.V. Hazards and Risks of Recreation Water Use: Vectors of International Studies. The Quality of Recreation Environments. Water Resour 48, 387–396 (2021). https://doi.org/10.1134/S0097807821030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807821030039

Keywords:

Navigation