Skip to main content
Log in

Recovery of Neodymium and Dysprosium from Waste Hard Disk Magnets: Roasting, Selective Leaching, Extraction and Stripping

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

We demonstrate an end-to-end protocol for the recovery of Dy and Nd from used NdFeB magnets by following steps- crushing, roasting, grinding, leaching, liquid–liquid extraction and striping. The magnets were roasted over a temperature range of 923–1273 K. The influence of roasting temperature was studied by leaching the roasted samples with HCl solution. Roasting temperature, leaching temperature, leaching time, acid concentration, mixing speed, and pulp density were optimized to selectively leach Nd and Dy while most of the Fe was removed by the hydrolysis of Fe into Fe(OH)3. Nd and Dy were extracted from the leach liquor using D2EHPA in a two-stage process. First, ~ 95% of Dy was extracted at a pH = 2, and 0.05 M D2EHPA and then Nd was extracted at pH = 4, A/O = 1 with 0.2 M D2EHPA in the second stage. Dy and Nd were completely recovered from the metal-rich organic phase by stripping with varied concentrations of HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M, J Clean Prod 51 (2013) 1.

    Article  CAS  Google Scholar 

  2. Dwadasi BS, Gupta S, Daware S, Goverapet Srinivasan S, Rai B, Ind Eng Chem 57 (2018) 17209.

    Article  CAS  Google Scholar 

  3. Yang Y, Walton A, Sheridan R, Güth K, Gauß R, Gutfleisch O, Buchert M, Steenari B-M, Van Gerven T, Jones PT, J Sustain Metall 3 (2017) 122.

    Article  Google Scholar 

  4. Gutiérrez-Gutiérrez SC, Coulon F, Jiang Y, Wagland S, Waste Manage 42 (2015) 128.

    Article  Google Scholar 

  5. Walton A, Yi H, Rowson NA, Speight JD, Mann VSJ, Sheridan RS, Bradshaw A, Harris IR, Williams AJ, J Clean Prod 104 (2015) 236.

    Article  CAS  Google Scholar 

  6. Zakotnik M, Harris IR, Williams AJ, J Aalloy Compd 450 (2008) 525.

    Article  CAS  Google Scholar 

  7. Itoh M, Miura K, Machida K, J Aalloy Compd 477 (2009) 484–487.

    Article  CAS  Google Scholar 

  8. Xu Y, Chumbley LS, Laabs FC, J Mater Res 15 (2000) 2296.

    Article  CAS  Google Scholar 

  9. Okabe TH, Takeda O, Fukuda K, Umetsu Y, Mater Trans 44 (2003) 798.

    Article  CAS  Google Scholar 

  10. Shirayama S, Okabe TH, Metall Mater Trans B 44 (2018) 1.

    Google Scholar 

  11. Önal MAR, Borra CR, Guo M, Blanpain B, Van Gerven T, J Rare Earths 35 (2017) 574.

    Article  Google Scholar 

  12. Makarova I, Ryl J, Sun Z, Kurilo I, Górnicka K, Laatikainen M, Repo E, Sep Purif Technol 251 (2020) 117362.5

    Article  Google Scholar 

  13. Xu X, Sturm S, Samardzija Z, Scancar J, Markovic K, Zuzek Rozman K, Green Chem 22 (2020) 1105.

    Article  Google Scholar 

  14. Saito T, Sato H, Ozawa S, Yu J, Motegi T, J Alloys compd 353 (2003) 189.

    Article  CAS  Google Scholar 

  15. Liu F, Porvali A, Wang J, Wang H, Peng C, Wilson BP, Lundström M, Miner Eng 145 (2020) 106097.

    Article  CAS  Google Scholar 

  16. Kumari A, Jha MK, Pathak DD, J Environ Manage 273 (2020) 111063.

    Article  CAS  Google Scholar 

  17. Rho B-J, Sun P-P, Cho S-Y, Sep Purif Technol 238 (2020) 116429.

    Article  CAS  Google Scholar 

  18. Önal MAR, Riaño S, Binnemans K, Hydrometallurgy 191 (2020) 105213.

    Article  Google Scholar 

  19. Zhang Y, Gu F, Su Z, Liu S, Anderson C, Jiang T, Metals 10 (2020) 841.

    Article  CAS  Google Scholar 

  20. Jyothi R K, Thenepalli T, Ahn J W, Parhi P K, Chung K W, Lee J-Y, J Clean Prod 267 (2020) 122048.

    Article  CAS  Google Scholar 

  21. Lee C-H, Chen Y-J, Liao C-H, Popuri SR, Tsai S-L, Hung C-E, Metall Mater Trans A 44 (2013) 5825.

    Article  CAS  Google Scholar 

  22. Rabatho JP, Tongamp W, Takasaki Y, Haga K, Shibayama A, J Mater Cycles Waste Manag 15 (2013) 171.

    Article  CAS  Google Scholar 

  23. Vander Hoogerstraete T, Blanpain B, Van Gerven T, Binnemans K, RSC Adv 4 (2014) 64099.

    Article  CAS  Google Scholar 

  24. Önal MAR, Aktan E, Borra CR, Blanpain B, Van Gerven T, Guo M, Hydrometallurgy 167 (2017) 115.

    Article  Google Scholar 

  25. Kumari A, Sinha MK, Pramanik S, Sahu SK, Waste Manage 75 (2018) 486.

    Article  CAS  Google Scholar 

  26. Tian Y, Liu Z, Zhang G, J Rare Earths 37 (2019) 205.

    Article  CAS  Google Scholar 

  27. Gergoric M, Ravaux C, Steenari B-M, Espegren F, Retegan T, Metals 8 (2018) 721.

    Article  Google Scholar 

  28. Parhi P K, Park K H, Nam C W, Park J T, J Rare Earths, 33 (2015) 207.

    Article  CAS  Google Scholar 

  29. Önal MAR, Borra CR, Guo M, Blanpain B, Van Gerven T, J Sustain Metall 1 (2015) 199.

    Article  Google Scholar 

  30. Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Shi C, Wei Q, Nat commun 8 (2017) 14264.

    Article  Google Scholar 

  31. Orefice M, Binnemans K, Vander Hoogerstraete T, RSC Adv 18 (2018) 9299.

    Article  Google Scholar 

  32. Zhao Z, Qiu Z, Yang J, Lu S, Cao L, Zhang W, Xu Y, Hydrometallurgy 167 (2017) 183.

    Article  CAS  Google Scholar 

  33. Parhi PK, Park KH, Senanayake G, J Ind Eng Chem 19 (2013) 589.

    Article  CAS  Google Scholar 

  34. Behera SS, Parhi PK, Sep Purif Technol 160 (2016) 59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Sudam Konelu. Laboratory technician, TRDDC for assistance with carrying out the experiments. The authors are thankful to Dr. Sriram Goverapet Srinivasan for useful discussions and manuscript review.

Funding

This research was funded by the TCS-Research under the SWON number 1009292.

Author information

Authors and Affiliations

Authors

Contributions

SD and SG performed the experiments, their analysis and wrote the original draft. All contributors conjointly discussed the results and their inferences and commented on the manuscript.

Corresponding author

Correspondence to Santosh Daware.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daware, S., Gupta, S. & Rai, B. Recovery of Neodymium and Dysprosium from Waste Hard Disk Magnets: Roasting, Selective Leaching, Extraction and Stripping. Trans Indian Inst Met 74, 1855–1863 (2021). https://doi.org/10.1007/s12666-021-02221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02221-w

Keywords

Navigation