Skip to main content
Log in

Early Paleozoic High- and Ultrahigh-Pressure Complexes in the Western Part of the Central Asian Orogenic Belt: Ages, Compositions, and Geodynamic Models of Formation

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The western part of the Central Asian Orogenic Belt, which comprises folded areas in Kazakhstan, Kyrgyzstan, and northwestern China, includes a number of large Precambrian sialic massifs that are framed by deformed and dismembered Paleozoic ophiolites and by island arc and flysch formations. The basements of the massifs are commonly made up of diverse metamorphic complexes, some of which were metamorphosed under high and ultrahigh pressures in the Early Paleozoic at ~480–530 Ma. These metamorphic formations are the Zerendy Group of the Kokchetav massif in northern Kazakhstan; Akdzhon Group of the Issyk-Kul massif in the northern Tien Shan); Aktyuz, Kemin, and Koyandy complexes of the Chu-Kendyktas and Zheltau massifs in southern Kazakhstan and the northern Tien Shan; and the Kassan Group of the Ishim–Naryn massif in the central Tien Shan. The paper reviews data on the structures, compositions, and metamorphic evolutions of the high- and ultrahigh-, and medium-pressure metamorphic rocks of these massifs. Numerous P–T assessments have been made for the near-peak and/or post-peak retrograde metamorphism, and some prograde P–T paths have been calculated for the key rock types over the past three decades of the studies. Near-peak and/or post-peak metamorphic ages and some ages of retrograde metamorphism are estimated for most of the high- and ultrahigh-pressure rocks. The paper discusses problems faced by the researcher when building geodynamic models for the high- and ultrahigh-pressure complexes in various massifs of the western part of the Central Asian Orogenic Belt. It is shown that any reliable model shall be underlain by detailed information on the compositions, ages, and formation environments of the protoliths for the ultrahigh-, high-, and medium-pressure rocks and complexes. Moreover, the structures and compositions of Paleozoic complexes surrounding the Precambrian massifs shall also be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abdulin, A.A., Volkov, V.M., Shcherba, G.N., et al., Chu–Iliiskii rudnyi poyas. Geologiya Chu–Iliiskogo regiona (Chu–Ili Ore Belt. Geology of the Chu–Yili Region), Alma-Ata: Nauka, 1980.

    Google Scholar 

  2. Abdulkabirova, M.A., Eclogites of the Kokchetav area, Vestn. AN KazSSR, 1946, no. 2, pp. 21–29.

  3. Alexeiev, D.V., Ryazantsev, A.V., Kroner, A., et al., Geochemical data and zircon ages for rocks in a high–pressure belt of Chu–Yili mountains, southern Kazakhstan: implications for the earliest stages of accretion in Kazakhstan and the Tianshan, J. Asian Earth Sci, 2011, vol. 42, pp. 805–820.

    Article  Google Scholar 

  4. Alexeiev, D.V., Kröner, A., Hegner, E., et al., Middle to Late Ordovician arc system in the Kyrgyz Middle Tianshan: from arc–continent collision to subsequent evolution of a Palaeozoic continental margin, Gondwana Res., 2016, vol. 39, pp. 261–291.

    Article  Google Scholar 

  5. Alexeiev, D.V., Biske, Yu.S., Djenchuraeva, A.V., et al., Late Carboniferous (Kasimovian) closure of the South Tianshan ocean: no Triassic subduction, J. Asian Earth Sci., 2019, vol. 173, pp. 54–60.

    Article  Google Scholar 

  6. Alexeiev, D.V., Khudolei A.K., and DuFrane, S.A., Paleoproterozoic and Neoproterozoic quartzites of the Kyrgyz North Tianshan: age determination according to the results of detrital zircon dating, Dokl. Earth Sci., 2020, vol. 491, no. 2, pp. 191–194.

    Article  Google Scholar 

  7. Apayarov, F.Kh., Almalysaiskii massiv (stroenie, sostav, vozrast) i ego znachenie kak vozrastnogo repera v kaledonidakh Tyan’-Shanya. Geologiya i poleznye iskopaemye (Almalysaisk Massif (Structure, Composition, and Age) and its Significance as Age Marker in the Tien Shan Caledonides. Geology and Mineral Resources), Bishkek: Ilim, 2009, pp. 141–151.

  8. Bakirov A. B. and R. A. Maksumova, Geodynamic Evolution of the Tien Shan Lithosphere, Russ. Geol. Geophys., 2001, vol. 42, no. 10, pp. 1433–1434.

    Google Scholar 

  9. Bakirov, A.B., Osobennosti stroeniya i usloviya formirovaniya eklogitonosnykh metamorficheskikh formatsii Tyan’–Shanya. Kristallicheskaya kora v prostranstve i vremeni. Metamorficheskie i gidrotermal’nye protsessy (Structure and Conditions of Formation of Eclogite–Bearing Metamorphic Formations of Tien Shan. Crystalline Crust in Space and Time. Metamorphic and Hydrothermal Processes), Moscow: Nauka, 1989, pp. 193–203.

  10. Bakirov, A.B., Tektonicheskaya pozitsiya metamorficheskikh kompleksov Tyan’–Shanya (Tectonic Position of Tien Shan Metamorphic Complexes), Frunze: Ilim, 1978.

  11. Bakirov, A.B., Kiseleuv, V.V., Ivleva, E.I., and Lukashova, E.M., On the age of the Kazan metamorphic complex, Izv. Akad. Nauk Respub. Kyrgyzstan, 1996, no. 1, pp. 31–37.

  12. Bakirov, A.B., Tagiri, M., Sakiev, K.S., and Ivleva, E.I., The Lower Precambrian rocks in the Tien Shan and their geodynamic setting, Geotectonics, 2003, vol. 37, no. 5, pp. 368–380.

    Google Scholar 

  13. Bakirov, A.B., Tagiri, M., Takasu, A., et al., (U)HP terreiny Tyan’–Shanya ((U)HP Terranes of Tien Shan), Bishkek: Ilim, 2017.

  14. Ballèvre, M., Bosse, V., Ducassou, C., et al., Palaeozoic history of the Armorican massif: models for the tectonic evolution of the suture zones, Compt. Rend. Geosci., 2009, vol. 341, nos. 2–3, pp. 174–201.

    Article  Google Scholar 

  15. Baruleva, O.A., Kullerud, K., and Konopel’ko, D.L., Geochemistry of ultra–high pressure rocks of the Makbal Complex (Northern Tien Shan, Kyrgyzstan), Materialy konferentsii “Sovremennoe sostoyanie nauk o Zemle” (Proc. Conference “Modern State of the Earth’s Science), M.: Izd-vo Geologicheskii fakul’tet MGU im. M.V. Lomonosova, 2011, pp. 189–192.

  16. Borisova, E.Yu., Bibikova, E.V., Dobrzhinetskaya, L.F., et al., Geochronological study of zircons from granite-gneisses of the Kokchetav diamond district, Dokl. Akad. Nauk 1995, vol. 343, no. 6, pp. 801–805.

    Google Scholar 

  17. Buslov, M.M. and Vovna, G.M., Composition and geodynamic nature of the protoliths of diamondiferous rocks from the Kumdy–Kol deposit of the Kokchetav Metamorphic Belt, Northern Kazakhstan, Geochem. Int., 2008, vol. 46, no. 9, pp. 887–896.

    Article  Google Scholar 

  18. Buslov, M.M., Zhimulev, F.I., and Travin, A.V., “New data on the structural setting and 40Ar/39Ar age of the MP–LP metamorphism of the Daulet Formation, Kokchetav Metamorphic Belt, Northern Kazakhstan, and their tectonic interpretation, Dokl. Earth Sci., 2010, vol. 434, no. 1, pp. 1147–1151.

    Article  Google Scholar 

  19. Claoué–Long, J.C., Sobolev, N.V., Shatsky, V.S., et al., Zircon response to diamond–pressure metamorphism in the Kokchetav massif, USSR, Geology, 1991, vol. 19, no. 7, pp. 710–713.

    Article  Google Scholar 

  20. Cong, B. and Wang, Q., The Dabie–Sulu UHP rocks belt: review and prospect, Chinese Sci. Bull., 1999, vol. 44.

  21. De Grave, J., Buslov, M.M., Zhimulev, F.I., et al., The Early Ordovician age of deformations in the Kokchetav subduction–collision zone: new structural and 40Ar-39Ar data, Russ. Geol. Geophys., 2006, vol. 47, no. 4, pp. 441–450.

    Google Scholar 

  22. Degtyarev, K.E., Tektonicheskaya evolyutsiya rannepaleozoiskikh ostrovoduzhnykh sistem i formirovanie kontinental’noi kory kaledonid Kazakhstana (Tectonic Evolution of the Early Paleozoic Island-Arc Systems and Formation of Continental Crust of Kazakhstan Caledonides), Moscow: GEOS, 2012.

  23. Degtyarev, K.E., Tret’yakov, A.A., Ryazantsev, A.V., et al., Stenian granitoids of the West Kyrgyz Ridge (North Tien Shan): position, structure, and age determination, Dokl. Earth Sci., 2011, vol. 441, no. 2, pp. 1484–1484.

    Article  Google Scholar 

  24. Degtyarev, K.E., Ryazantsev, A.V., Tretyakov, A.A., et al., Neoproterozoic–Early Paleozoic tectonic evolution of the western part of the Kyrgyz Ridge (Northern Tien Shan) Caledonides, Geotectonics, 2013, vol. 47, pp. 377–417.

    Article  Google Scholar 

  25. Degtyarev, K.E., Tolmacheva, T.Y., Tretyakov, A.A., et al., Cambrian–Lower Ordovician complexes of the Kokchetav massif and its fringing (northern Kazakhstan): structure, age and tectonic setting, Geotectonics, 2016, vol. 30, no. 1, pp. 71–142.

    Article  Google Scholar 

  26. Degtyarev, K., Yakubchuk, A., Tretyakov, A., et al., Precambrian geology of the Kazakh uplands and Tien Shan: an overview, Gondwana Res., 2017, vol. 47, pp. 44–75.

    Article  Google Scholar 

  27. Demina, L.I., Talitskii, V.G., and Koroteeva, E.Yu., Geodinamicheskie usloviya obrazovaniya eklogitov i granatovykh amfibolitov Makbal’skogo brakhiantiklinoriya (Severnyi Tyan’–Shan’). Ocherki po regional’noi tektonike. Tom. 2. Kazakhstan, Tyan’–Shan’, Polyarnyi Ural (Geodynamic Conditions of Formation of Eclogites and Garnet Amphibolites of the Makbal Brachyanticline (Northern Tien Shan). Essays on Regional Tectonics. Volume 2. Kazakhstan, Tien Shan, and Polar Urals), Moscow: Nauka, 2005, vol. 2, pp. 100–129.

  28. Dobretsov, N.L., Tenissen K., and Smirnova, L.V., Structural and geodynamic evolution of diamond–bearing metamorphic rocks of the Kokchetav massif (Kazakhstan), Geol. Geofiz., 1998, vol. 39, pp. 1645–1666.

    Google Scholar 

  29. Dobretsov, N.L., Sobolev, N., Shatsky, V.S., et al., Geotectonic evolution of diamondiferous parageneses, Kokchetav Complex, northern Kazakhstan: the geologic enigma of ultrahigh-pressure crustal rocks within a Paleozoic fold belt, Island Arc, 1995, vol. 4, no. 4, pp. 267–279.

    Article  Google Scholar 

  30. Dobretsov, N.L., Buslov, M.M., Zhimulev, F.I., et al., Vendian–Early Ordovician geodynamic evolution and model for exhumation of ultrahigh- and high-pressure rocks from the Kokchetav subduction–collision zone (northern Kazakhstan), Russ. Geol. Geophys., 2006, vol. 47, no. 4, pp. 424–440.

    Google Scholar 

  31. Dobrzhinetskaya, L.F., Microdiamonds—frontier of ultrahigh-pressure metamorphism: a review, Gondwana Res., 2012, vol. 21, no. 1, pp. 207–223.

    Article  Google Scholar 

  32. Dobrzhinetskaya, L.F., Braun, T.V., Sheshkel, G.C., et al., Geology and structure of diamond-bearing rocks of the Kokchetav massif (Kazakhstan), Tectonophysics, 1994, vol. 233, pp. 293–313.

    Book  Google Scholar 

  33. Efimov, I.A., On eclogites of the Kokchetav region as a possible source of rutile, Izv. AN KazSSR, 1962, no. 3, pp. 15–32.

  34. Efimov, I.A., Borovinskaya, L.G., Naidenov, B.M., Eclogites of the South Kazakhstan and their radiological age, Problemy metallogenii Kazakhstana (Problems of Kazakhstan Metallogeny), Alma–Ata. 1983, pp. 81–115.

    Google Scholar 

  35. Eklogity i glaukofanovye slantsy v skladchatykh oblastyakh (Eclogites and Glaucophane Schists in Fold Areas), Ed. by Dobretsov, N.L., Sobolev, N.V., and Shatsky, V.S., Novosibirsk: Nauka, 1989.

    Google Scholar 

  36. Ernst, W.G., Maruyama, S., and Wallis, S., Buoyancy-driven, rapid exhumation of ultrahigh-pressure. Metamorphosed continental crust, Geology, 1997, vol. 94, no. 18, pp. 9532–9537.

    Google Scholar 

  37. Ernst, W., Hacker, B., and Liou, J., Petrotectonics of ultrahigh-pressure crustal and uppermantle rocks – implications for Phanerozoic collisional orogens, Geol. Soc. Am. Spec. Pap., 2007, vol. 433, pp. 27–49.

    Google Scholar 

  38. Glorie, S., Zhimulev, F.I., Buslov, M.M., et al., Formation of the Kokchetav subduction-collision zone (northern Kazakhstan): insights from zircon U-Pb and Lu-Hf isotope systematics, Gondwana Res., 2015, vol. 27, pp. 424–438.

    Article  Google Scholar 

  39. Hacker, B.R., Calvert, A., Zhang, R.Y., et al., Ultrarapid exhumation of ultrahigh–pressure diamond–bearing metasedimentary rocks of the Kokchetav massif, Kazakhstan, Lithos, 2003, vol. 70, pp. 61–75.

    Article  Google Scholar 

  40. Hermann, J., Rubatto, D., Korsakov, A., et al., Multiple growth during fast exhumation of diamondiferous deeply subducted continental crust (Kokchetav massif, Kazakhstan), Contrib. Mineral. Petrol., 2001, vol. 141, pp. 66–82.

    Article  Google Scholar 

  41. Ivanov, K.S., Mikolaichuk, A.V., Puchkov, V.N., et al., The Mid-Tien–Shan ophiolites: structural position and age, Russ. Geol. Geophys., 2002, vol. 43, no. 12, pp. 1093–1098.

    Google Scholar 

  42. Ivleva, E.A., Garnets from schist rocks of the Kassan metamorphic complex, Izv. NAN KR, 2003, no. 4, pp. 111–117.

  43. Ivleva, E.A., Collisional Metamorphic Compelxes. Report, Bishkek, 2010 (unpublished data).

  44. Jagoutz, E., Shatsky, V.S., Sobolev, N.V., et al., Pb–Nd–Sr isotopic study of the Kokchetav massif, the outcrop of the lower lithosphere, Workshop on Diamonds, 28th International Geological Congress, Boyd, F.R. Meyer, H.O. and Sobolev, N.V., Eds. Washington, DC: Carnegie Institution Geophysical Laboratory, 1989.

  45. Kaneko, Y., Maruyama, S., Terabayashi, M., et al., Geology of the Kokchetav UHP–HP metamorphic belt, Northern Kazakhstan, Island Arc, 2000, vol. 9, pp. 264–283.

    Article  Google Scholar 

  46. Kasymbekov, A., Takasu, A., and Kabir, M., et al., Metamorphism and K-Ar white mica ages of pelitic schists in the Makbal Complex, Kyrgyz Northern Tien–Shan, Earth Sci. (Chikyu Kagaku), 2020, vol. 74, pp. 47–64.

    Google Scholar 

  47. Katayama, I., Zayachkovsky, A.A., and Maruyama, S., Prograde P–t records from inclusions in zircons from UHP–HP rocks of the kokchetav massif, northern kazakhstan, Island Arc, 2000, vol. 9, pp. 417–427.

    Article  Google Scholar 

  48. Katayama, I., Maruyama, S., Parkinson, C.D., et al., Ion microprobe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan, Earth Planet. Sci. Lett., 2001, vol. 188, pp. 185–198.

    Article  Google Scholar 

  49. Katayama, I., Muko, A., Iizuka, T., et al., Dating of zircon from Ti-clinohumite-bearing garnet peridotite: implication for timing of mantle metasomatism, Geology, 2003, vol. 31, no. 8, pp. 713–716.

    Article  Google Scholar 

  50. Klemd, R., Hegner, E., Bergmann, H., et al., Eclogitization of transient crust of the Aktyuz complex during Late Palaeozoic plate collisions in the northern Tianshan of Kyrgyzstan, Gondwana Res., 2014, vol. 26, pp. 925–941.

    Article  Google Scholar 

  51. Klemd, R., Gao, J., Li, J.L., et al., Metamorphic evolution of (ultra)-high-pressure subduction–related transient crust in the south Tianshan orogen (central Asian orogenic belt): geodynamic implications, Gondwana Res., 2015, vol. 28, pp. 1–25.

    Article  Google Scholar 

  52. Konopelko, D., Kullerud, K., Apayarov, F., et al., SHRIMP zircon chronology of HP–UHP rocks of the Makbal metamorphic complex in the north Tienshan, Kyrgyzstan, Gondwana Res., 2012, vol. 22, pp. 300–309.

    Article  Google Scholar 

  53. Konopelko, D. and Klemd, R., Deciphering protoliths of the (U)HP rocks in the Makbal metamorphic complex, Kyrgyzstan: geochemistry and shrimp zircon geochronology, Eur. J. Mineral., 2016, vol. 28, pp. 1233–1253.

    Article  Google Scholar 

  54. Korsakov, A.V., Shatsky, V.S., and Sobolev, N.V., The first finding of coesite in the eclogites of the Kokchetav Massif, Dokl. Earth Sci., 1998, vol. 360, no. 1, pp. 469–473.

    Google Scholar 

  55. Korsakov, A.V., Shatsky, V.S., Sobolev, N.V., et al., Garnet–biotite–clinozoisite gneiss: a new type of diamondiferous metamorphic rock from the Kokchetav massif, Eur. J. Mineral., 2002, vol. 14, pp. 915–928.

    Article  Google Scholar 

  56. Korsakov, A.V., Hutsebaut, D., Theunissen, K., et al., Raman mapping of coesite inclusions in garnet from the Kokchetav massif (Northern Kazakhstan), Spectrochim. Acta, Part A. Molecular and Biomolecular Spectroscopy, 2007, vol. 68, no. 4, pp. 1046–1052.

    Article  Google Scholar 

  57. Korsakov, A.V., Travin, A.V., Yudin, D.S., et al., 40Ar/39Ar dating of tourmaline from metamorphic rocks of the Kokchetav Massif, Kazakhstan, Dokl. Earth Sci., 2009, vol. 424, no. 2, pp. 168–170.

    Article  Google Scholar 

  58. Kotková, J., High-pressure granulites of the bohemian massif: recent advances and open questions, J. Geosci., 2007, vol. 52, pp. 45–71.

    Google Scholar 

  59. Kovach, V., Degtyarev, K., Tretyakov, A., et al., Sources and provenance of the Neoproterozoic placer deposits of the northern Kazakhstan: implication for continental growth of the western Central Asian Orogenic Belt, Gondwana Res., 2017, vol. 47, pp. 28–43.

    Article  Google Scholar 

  60. Kozakov, I.K., Rannii dokembrii Tsentral’no–aziatskogo skladchatogo poyasa (Early Precambrian of the Central-Asian Fold Belt), St. Petersburg: Nauka, 1993.

  61. Kröner, A., Windley, B.F., Badarch, G., et al., Accretionary growth and crust formation in the Central Asian orogenic belt and comparison with the Arabian–Nubian shield, 4-D Framework of Continental Crust, Hatcher, R.D., Carlson, M.P., McBride, J.H., et al., Eds., Geol. Soc. Amer. Mem., 2007, pp. 181–209.

  62. Kröner, A., Alexeiev, D.V., Hegner, E., et al., Zircon and muscovite ages, geochemistry, and Nd–Hf isotopes for the Aktyuz metamorphic terrane: evidence for an Early Ordovician collisional belt in the Northern Tianshan of Kyrgyzstan, Gondwana Res., 2012, vol. 21, pp. 901–927.

    Article  Google Scholar 

  63. Kröner, A., Alexeiev, D.V., Rojas-Agramonte, Y., et al., Mesoproterozoic (Grenville–age) terranes in the Kyrgyz North Tienshan: zircon ages and Nd–Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen, Gondwana Res., 2013, vol. 23, pp. 272–295.

    Article  Google Scholar 

  64. Kushev, V.G. and Vinogradov, D.P., Metamorfogennye eklogity (Metamorphogenic Eclogites), Novosibirsk: Nauka, 1978.

  65. Lavrova, L.D., Pechnikov, V.A., Pleshakov, A.M., et al., Novyi geneticheskii tip almaznykh mestorozhdenii (New Genetic Types of Diamond Deposits), Moscow: Nauchnyi mir, 1999.

  66. Letnikov, F.A., Formation of diamond in deep-seated tectonic zones, Dokl. AN SSSR, 1983, vol. 271, no. 2, pp. 433–435.

    Google Scholar 

  67. Letnikov, F.A., Kostitsyn, Yu.A., Vladykin, N.V., et al., Isotopic characteristics of the Krasnyi Mai ultramafic alkaline rock complex, Northern Kazakhstan, Dokl. Earth Sci., 2004, vol. 399A, no. 9, pp. 1315–1319.

    Google Scholar 

  68. Loury, C., Rolland, Y., Cenki–Tok, B., et al., Late Paleozoic evolution of the South Tien Shan: insights from P–t estimates and allanite geochronology on retrogressed eclogites (Chatkal Range, Kyrgyzstan), J. Geodynamics, 2016, vol. 96, pp. 62–80.

    Article  Google Scholar 

  69. Maruyama, S. and Parkinson, C.D., Overview of the geology, petrology and tectonic framework of the high-pressure–ultrahigh-pressure metamorphic belt of the Kokchetav massif, Kazakhstan, Island Arc, 2000, vol. 9, pp. 439–455.

    Article  Google Scholar 

  70. Maruyama, S., Liou, J.G., and Terabayashi, M., Blueschists and eclogites of the world and their exhumation, Int. Geol. Rev., 1996, vol. 38, no. 6, pp. 485–594.

    Article  Google Scholar 

  71. Masago, H., Metamorphic petrology of the Barchi–Kol metabasites, Western Kokchetav ultrahigh-pressure–high-pressure massif, northern Kazakhstan, Island Arc, 2000, vol. 9, pp. 358–378.

    Article  Google Scholar 

  72. Masago, H., Rumble, D., Ernst, W.G., et al., Low σ18O eclogites from the Kokchetav massif northern Kazakhstan, J. Metamorph. Geol., 2003, vol. 21, pp. 579–587.

    Article  Google Scholar 

  73. Masago, H., Omori, S., and Maruyama, S., Counter clockwise prograde P–t path in collisional orogeny and water subduction at the Precambrian–Cambrian boundary: the ultrahigh pressure pelitic schist in the Kokchetav massif, northern Kazakhstan, Gondwana Res., 2009, vol. 15, pp. 137–150.

    Article  Google Scholar 

  74. Medaris, L.G., Beard, B.L., Johnson, C.M., et al., Garnet pyroxenite and eclogite in the Bohemian massif: geochemical evidence for Variscan recycling of subducted lithosphere, Geol. Rundsch., 1995, vol. 84, pp. 489–505.

    Article  Google Scholar 

  75. Metamorficheskie kompleksy Azii (Metamorphic Complexes of Asia), Sobolev, V.S., Lepezin, G.G., Dobretsov, N.L., Eds., Novosibirsk: Nauka, 1977.

    Google Scholar 

  76. Meyer, M., Klemd, R., and Konopelko, D., High-pressure mafic oceanic rocks from the Makbal complex, Tianshan mountains (Kazakhstan & Kyrgyzstan): implications for the metamorphic evolution of a fossil subduction zone, Lithos, 2013, vol. 177, pp. 207–225.

    Article  Google Scholar 

  77. Meyer, M., Klemd, R., Hegner, E., et al., Subduction and exhumation mechanisms of ultra–high and high–pressure oceanic and continental crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan), J. Metamorph. Geol., 2014, vol. 32, pp. 861–884.

    Article  Google Scholar 

  78. Petrografiya Tsentral’nogo Kazakhstana, Vol. II. Osnovnye i ul’traosnovnye porody (Petrography of Central Kazakhstan. Volume II. Basic and Ultrabasic Rocks), Mikhailov N.P., Eds., Moscow: Nedra, 1971.

  79. Mikolaichuk, A.V., Kurenkov, S.A., Degtyarev, K.E., et al., Northern Tien Shan: Main stages of geodynamic evolution in the Late Precambrian–Early Paleozoic, Geotectonics, 1997, vol. 31, no. 6, pp. 445–462.

    Google Scholar 

  80. Mühlberg, M., Hegner, E., Klemd, R., et al., Late Carboniferous high–pressure metamorphism of the Kassan metamorphic complex (Kyrgyz Tianshan) and assembly of the SW Central Asian Orogenic Belt, Lithos, 2016, vol. 264, pp. 41–55.

    Article  Google Scholar 

  81. Musiyachenko, K.A., Korsakov, A.V., Shimizu, R., et al., New insights on Raman spectrum of K–bearing tourmaline, J. Raman Spectrosc., 2019, pp. 1–10.

  82. Nedovizin, A.A., Precambrian and Cambrian of the Chu–Ili Mountains and southeastern Betpak Daly, Izv. AN KazSSR. Ser. Geol., 1963. Vyp. 3, pp. 54.

    Google Scholar 

  83. Ogasawara, Y., Ohta, M., Fukasawa, K., et al., Diamond-bearing and diamond-free metacarbonate rocks from Kumdy–Kol in the Kokchetav massif, northern Kazakhstan, Island Arc, 2000, vol. 9, pp. 400–416.

    Article  Google Scholar 

  84. Okamoto, K., Liou, J.G., and Ogasawara, Y., Petrology of the diamond-grade eclogite in the Kokchetav massif, Northern Kazakhstan, Island Arc, 2000, vol. 9, pp. 379–399.

    Article  Google Scholar 

  85. Orozbaev, R.T., Takasu, A., Tagiri, M., et al., Polymetamorphism of Aktyuz eclogites (northern Kyrgyz Tien Shan) deduced from inclusions in garnets, J. Mineral. Petrol. Sci., 2007, vol. 102, pp. 150–156.

    Article  Google Scholar 

  86. Orozbaev, R.T., Takasu, A., Bakirov, A.B., et al., Metamorphic history of eclogites and country rock gneisses in the Aktyuz area, northern Tien–Shan, Kyrgyzstan: a record from initiation of subduction through to oceanic closure by continent–continent collision, J. Metamorph. Geol., 2010, vol. 28, pp. 317–339.

    Article  Google Scholar 

  87. Orozbaev, R., Hirajima, T., Bakirov, A.B., et al., Trace element characteristics of clinozoisite pseudomorphs after lawsonite in talc–garnet–chloritoid schists from the Makbal UHP complex, northern Kyrgyz Tian–Shan, Lithos, 2015, vol. 226, pp. 98–115.

    Article  Google Scholar 

  88. Ota, T., Terabayashi, M., Parkinson, C.D., et al., Thermobaric structure of the Kokchetav ultrahigh–pressure–high–pressure massif deduced from a north–south transect in the Kulet and Soldat–Kol regions, Northern Kazakhstan, Island Arc, 2000, vol. 9, pp. 328–357.

    Article  Google Scholar 

  89. Parkinson, C.D., Coesite inclusions and prograde compositional zonation of garnets in white schists of the HP–UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism, Lithos, 2000, vol. 52, pp. 215–233.

    Article  Google Scholar 

  90. Pilitsyna, A.V., Degtyarev, K.E., and Tretyakov, A.A., First find of phengite eclogites and garnet–glaucophane schists associated with jadeitites in the Kenterlau–Itmurundy serpentinite melange (North Balkhash ophiolite zone; Central Kazakhstan), Abstract, vol. 13th International Eclogite Conference, Mattinson, C., Castelli, D., Faryad, S.W., et al., Eds., Petrozavodsk: KRC RAS, 2019b, p. 65.

  91. Pilitsyna, A.V. and Tret’yakov, A.A., New age data on metamorphism of high–pressure granulites of the Zhel’tav terrane (southern Kazakhstan), Materialy LII Tektonicheskogo soveshchaniya (Proc. 52nd Tectonic Conference), Moscow: GEOS, 2020, pp. 153–156.

  92. Pilitsyna, A.V., Tretyakov, A.A., Degtyarev, K.E., et al., Eclogites and garnet clinopyroxenites in the Anrakhai Complex, Central Asian Orogenic Belt, southern Kazakhstan: P–t evolution, protoliths and some geodynamic implications, J. Asian Earth Sci., 2018a, vol. 153, pp. 325–345.

    Article  Google Scholar 

  93. Pilitsyna, A.V., Tretyakov, A.A., Degtyarev, K.E., et al., Multi-stage metamorphic evolution and protolith reconstruction of spinel–bearing and symplectite-bearing ultramafic rocks in the Zheltau massif, Southern Kazakhstan (Central Asian Orogenic Belt), Gondwana Res., 2018b, vol. 64, pp. 11–34.

    Article  Google Scholar 

  94. Pilitsyna, A.V., Tretyakov, A.A., Degtyarev, K.E., et al., Early Palaeozoic metamorphism of Precambrian crust in the Zheltau terrane (southern Kazakhstan; Central Asian orogenic belt): P–t paths, protoliths, zircon dating and tectonic implications, Lithos, 2019a, vol. 324–325, pp. 115–140.

    Article  Google Scholar 

  95. Pilitsyna, A.V., Degtyarev, K.E., and Tretyakov, A.A., First find of phengite eclogites and garnet–glaucophane schists associated with jadeitites in the Kenterlau–Itmurundy serpentinite mélange (North Balkhash ophiolite zone; Central Kazakhstan), Abstract Vol. 13th International Eclogite Conference, Mattinson, C., Castelli, D., Faryad, S.W., et al., Eds., Petrozavodsk: KRC RAS, 2019b, p. 65.

  96. Ragozin, A.L., Liou, J.G., Shatsky, V.S., et al., The timing of retrograde partial melting in the Kumdy–Kol region, Lithos, 2009, vol. 109, pp. 274–284.

    Article  Google Scholar 

  97. Reverdatto, V.V. and Selyatitskii, A.Yu., Olivine–garnet, olivine–spinel, and orthopyroxene metamorphic rocks of the Kokchetav Massif, Northern Kazakhstan, Petrology, 2005, vol. 13, no. 6, pp. 514–539.

    Google Scholar 

  98. Reverdatto, V.V., SelyatitskiiA.Yu., and Carswell, D., Geochemical distinctios between “crustal” and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes, Russ. Geol. Geophys., 2008, vol. 49, no. 2, pp. 73–90.

    Article  Google Scholar 

  99. Rojas-Agramonte, Y., Herwartz, D., García-Casco, A., et al., Early Palaeozoic deep subduction of continental crust in the Kyrgyz North Tianshan: evidence from Lu–Hf garnet geochronology and petrology of mafic dikes, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 525–543.

    Article  Google Scholar 

  100. Rojas-Agramonte, Y., Kröner, A., Alexeiev, D.V., et al., Detrital and igneous zircon ages for supracrustal rocks of the Kyrgyz Tianshan and palaeogeographic implications, Gondwana Res., 2014, vol. 26, pp. 957–974.

    Article  Google Scholar 

  101. Root, D.B., Hacker, B.R., and Gans, P., et al., Discrete ultrahigh-pressure domains in the Western Gneiss Region, Norway: implications for formation and exhumation, J. Metamorph. Geol., 2005, vol. 23, no. 1, pp. 45–61.

    Article  Google Scholar 

  102. Rosen, O.M., Zorin, Yu.M., Zayachkovskii, A.A., Discovery of diamond in relation with Precambrian ecologites of the Kokchetav massif, Dokl. AN SSSR, 1972, vol. 203, no. 3, pp. 674–676.

    Google Scholar 

  103. Ryazantsev, A.V., Degtyarev, K.E., Kotov, A.B., et al., Ophiolite sections of the Dzhalair–Nayman Zone, South Kazakhstan: their structure and age substantiation, Dokl. Earth Sci., 2009, vol. 427A, no. 6, pp. 902–906.

    Article  Google Scholar 

  104. Schertl, H. and Sobolev, N.V., The kokchetav massif, kazakhstan: “type” “locality” of diamond-bearing UHP metamorphic rocks, J. Asian Earth Sci., 2013, vol. 63, pp. 5–38.

    Article  Google Scholar 

  105. Shatsky, V.S., Skuzovatov, S.Yu., and Ragozin, A.L., Isotope-geochemical evidence for crustal contamination of eclogites in the in the Kokchetav subduction collision zone, Russ. Geol. Geophys., 2018, vol. 59, no. 12, pp. 1560–1576.

    Article  Google Scholar 

  106. Shatsky, V.S., Yagoutz, I., Kozmenko, O.A., Et al., Age and genesis of eclogites of the Kokchetav massif, Geol. Geofiz., 1993, no. 12, pp. 47–58.

  107. Shatsky, V.S., Sobolev, N.V., and Vavilov, M.A., Diamond-bearing metamorphic rocks of the Kokchetav massif, N Kazakhstan, Ultrahigh Pressure Metamorphism, Coleman, R.G. and Wang, X., Eds., Cambridge: University Press, 1995.

    Google Scholar 

  108. Shatsky, V.S., Tennisen K., Dobretsov, N.L., et al., New evidence for ultra-high-pressure metamorphism in micaceous schists of the Kulet area of the Kokchetav massif, Northern Kazakhstan, Geol. Geofiz., 1998, vol. 39, no. 8, pp. 1039–1044.

    Google Scholar 

  109. Shatsky, V.S., Yagoutz, E., Sobolev, N.V., et al., Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan), Contrib. Mineral. Petrol., 1999, vol. 137, pp. 185–205.

    Article  Google Scholar 

  110. Shimizu, R. and Ogasawara, Y., Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP metamorphic rocks: a geochemical recorder from peak to retrograde metamorphic stages, J. Asian Earth Sci., 2013, vol. 63, pp. 39–55.

    Article  Google Scholar 

  111. Skuzovatov, S.Yu., Shatsky, V.S., Ragozin, A.L. et al., Ubiquitous post-peak zircon in an eclogite from the Kumdy–Kol, Kokchetav UHP–HP massif (Kazakhstan): significance of exhumation–related zircon growth and modification in continental–subduction settings, Island Arc, 2021 (in press).

  112. Sobolev, N.V. and Shatsky, V.S., Diamond inclusions in garnets from metamorphic rocks: a new environment of diamond formation, Nature, 1990, vol. 343, pp. 742–746.

    Article  Google Scholar 

  113. Sobolev, N.V., Shatsky, V.S., Vavilov, M.A., et al., Coesite inclusion in zircon from diamond–bearing gneisses of the Kokchetav massif: first find of coesite in metamorphic rocks at the USSR territory, Dokl. AN SSSR, 1991, vol. 321, no. 1, pp. 184–188.

    Google Scholar 

  114. Sobolev, N.V., Schertl, H.–P., Valley, J.R., et al., Oxygen isotope variations of garnets and clinopyroxenes in a layered diamondiferous calcsilicate rock from Kokchetav massif, Kazakhstan: a window into the geochemical nature of deeply subducted UHPM rocks, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 1079–1092.

    Article  Google Scholar 

  115. Stepanov, A.S. and Hermann, J., Geochemistry of UHP-anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions geochemistry of ultrahigh–pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions, Contrib. Mineral. Petrol., 2014, vol. 167, p. 1002.

    Article  Google Scholar 

  116. Stepanov, A.S., Rubatto, D., Hermann, J., et al., Contrasting P–t paths within the Barchi–Kol UHP terrain (Kokchetav Complex): implications for subduction and exhumation of continental crust contrasting P–t paths within the Barchi–Kol UHP terrain (Kokchetav Complex): implications for subduction and exhumation of continental crust, Am. Mineral., 2016, vol. 101, no. 4, pp. 788–807.

    Article  Google Scholar 

  117. Tagiri, M. and Bakirov, A.B., Quartz pseudomorph after coesite in garnet from a garnet–chloritoid–talc schist, northern Tien–Shan, Kirghiz SSR, Proceedings of the Japan Academy, Ser. B, vol. 66, pp. 135–139.

  118. Tagiri, M., Yano, T., Bakirov, A., et al., Mineral parageneses and metamorphic P–t paths of ultrahigh–pressure eclogite from Kyrgyz Tian Shan, Island Arc, 1995, vol. 4, pp. 280–292.

    Article  Google Scholar 

  119. Tagiri, M., Takiguchi, S., Noguchi, T., et al., Intrusion UHP metamorphic rocks into the upper crust Kyrgyzian Tien–Shan: P–t path and metamorphic age of the Makbal complex, J. Mineral. Petrol. Sci., 2010, vol. 105, pp. 233–250.

    Article  Google Scholar 

  120. Takasu, A. and Orozbaev, A.B., Variety of chemical compositions of amphiboles from eclogites in the Aktyuz area, Northern Kyrgyz Tien–Shan, Geosci. Rept. Shimane Univ., 2009, vol. 28, pp. 51–63.

    Google Scholar 

  121. Terabayashi, M., Ota, T., Yamamoto, H., et al., Contact metamorphism of the Daulet Suite by solid–state emplacement of the Kokchetav UHP–HP metamorphic slab, Int. Geol. Rev., 2002, vol. 44, no. 9, pp. 819–830.

    Article  Google Scholar 

  122. Theunissen, K., Dobretsov, N., Shatsky, V.S., et al., The diamond-bearing Kokchetav UHP massif in Northern Kazakhstan: exhumation structure, Terra Nova, 2002, vol. 12, no. 4, pp. 181–187.

    Article  Google Scholar 

  123. Togonbaeva, A., Takasu, A., Kamei, A., et al., Sm–Nd and K–Ar ages of the HP rocks in the Neldy Formation in the Makbal HP–UHP metamorphic terrane, Northern Tien–Shan, Kyrgyzstan, The 117th Annual Meeting of the Geological Society of Japan. The Geological Society of Japan, Toyama, 2010a, p. 136.

  124. Togonbaeva, A., Takasu, A., Bakirov, Az.B., et al., CHIME monazite ages of garnet–chloritoid–talc schists in the Makbal complex, Northern Kyrgyz Tien Shan: first report of the age of the UHP metamorphism, J. Mineral. Petrol. Sci., 2009, vol. 104, no. 2, pp. 77–81.

    Article  Google Scholar 

  125. Togonbaeva, A., Takasu, A., Tagiri, M., et al., Newly described eclogites from the Neldy Formation, Makbal district, Northern Tien–Shan, Kyrgyzstan, J. Mineral. Petrol. Sci., 2010b, vol. 105, pp. 80–85.

    Article  Google Scholar 

  126. Tretyakov, A.A., Degtyarev, K. E., Kotov, A. B., et al., Stenian granitoids of the West Kyrgyz Ridge (North Tien Shan): position, structure, and age determination, Dokl. Earth Sci., 2011, vol. 440, no. 4, pp. 1484–1488.

    Google Scholar 

  127. Tretyakov, A.A., Degtyarev, K.E., Sal’nikova, E.B., et al., Paleoproterozoic anorogenic granitoids of the Zheltav sialic massif (Southern Kazakhstan): structural position and geochronology, Dokl. Earth Sci., 2016, vol. 466, no. 1, pp. 196–201.

    Article  Google Scholar 

  128. Tsujimori, T., Sisson, V.B., Liou, J.G., et al., Very-low-temperature record of the subduction process: a review of worldwide lawsonite eclogites, Lithos, 2006, vol. 92, pp. 609–624.

    Article  Google Scholar 

  129. Turkina, O.M., Letnikov, F.A., and Levin, A.V., Mesoproterozoic granitoids of the Kokchetav microcontinent basement, Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 176–180.

    Article  Google Scholar 

  130. Volkova N. I., Tarasova E. N., Polyanskii N. V., et al., High-pressure rocks in the serpentinite melange of the Chara Zone, Eastern Kazakhstan: geochemistry, petrology, and age, Geochem. Int., 2008, vol. 46, no. 4, pp. 386–401.

    Article  Google Scholar 

  131. Yamamoto, J., Maruyama, S., Parkinson, C.D., et al., Geochemical characterictics of metabasites from the kokchetav massif: subduction zone metasomatism along an intermediate geotherm, The Diamond-Bearing Kokchetav Massif, Kazakhstan, Parkinson, P.D., Katayama, I., Liou, J.G., Maruyama, S., Eds., Tokyo: Universal Academy Press. Inc, 2002.

    Google Scholar 

  132. Yarmolyuk, V.V. and Degtyarev, K.E., Precambrian terranes of the Central Asian Orogenic Belt: comparative characteristics, types, and peculiarities of tectonic evolution, Geotectonics, 2019, vol. 53, no. 1, pp. 1–32.

    Article  Google Scholar 

  133. Yui, T.-F., Chu, H.-T., Hwang, S.-L., et al., Geochemistry of garnetiferous Ti-clinohumite rock and talc–kyanite–phengite–almandine schist from the Kokchetav UHP terrane, Kazakhstan: an insight to possible origins of some chemically unusual UHP rocks, Lithos, 2010, vol. 118, pp. 131–144.

    Article  Google Scholar 

  134. Zaitsev, Yu.A. and Kheraskova, T.N., Vend Tsentral’nogo Kazakhstana (Vendian of Central Kazakhstan), Moscow: MGU, 1979.

  135. Zhang, R.Y., Liou, J.G., Ernst, W.G., et al., Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav massif, Northern Kazakhstan, J. Metamorph. Geol., 1997, vol. 15, pp. 479–496.

    Article  Google Scholar 

  136. Zhang, R.Y., Liou, J.C., Sobolev, N.V., et al., Tale of the Kulet eclogite from the Kokchetav massif, Kazakhstan: initial tectonic setting and transition from amphibolites to eclogites, J. Metamorph. Geol., 2012, vol. 30, pp. 537–559.

    Article  Google Scholar 

  137. Zhang, R.Y., Li, X.H., Yui, T.F., et al., U-Pb geochronology of zircon and rutile from the Kokchetav metamorphic belt, Northern Kazakhstan, and its tectonic implications, Eur. J. Mineral., 2016, vol. 28, no. 6, pp. 1203–1213.

    Article  Google Scholar 

  138. Zhimulev, F.I., Poltaranina, M.A., Korsakov, A.V., et al., Eclogites of the Late Cambrian–Early Prdovician North Kokchetav tectonic zone (northern Kazakhstan): structural position and petrology, Russ. Geol. Geophys., 2010, vol. 51, no. 2, pp. 190–203.

    Article  Google Scholar 

  139. Zhimulev, F.I., Buslov, M.M., Travin, A.V., et al., Early–Middle Ordovician nappe tectonics of the junction between the Kokchetav HP–UHP metamorphic belt and the Stepnyak paleoisland arc (northern Kazakhstan), Russ. Geol. Geophys., 2011, vol. 52, no. 1, pp. 109–121.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank E.V. Sklyarov and S.A. Bushmin for valuable comments on the manuscript. The authors also thank D.V. Alexeiev, A.A. Tretyakov, and S.Yu. Skuzovatov for help with materials for this review and for constructive recommendations. A.V. Skoblenko thanks D.S. Mikhailenko for support while preparing this paper.

Funding

This study was supported by Russian Foundation for Basic Research, project no. 19-15-50131 “Expansion”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Skoblenko.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoblenko, A.V., Degtyarev, K.E. Early Paleozoic High- and Ultrahigh-Pressure Complexes in the Western Part of the Central Asian Orogenic Belt: Ages, Compositions, and Geodynamic Models of Formation. Petrology 29, 246–276 (2021). https://doi.org/10.1134/S0869591121030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121030048

Keywords:

Navigation