Skip to main content
Log in

Evidence of Late Svecofennian Elevated-Pressure Metamorphism in the North Ladoga Zonal Metamorphic Complex, Southeastern Fennoscandian Shield

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The mineral assemblage Pl + Bt + Qtz + Grt + Sil + Ilm + Rt ± St (without cordierite) found in metapelites at the Kitelä garnet deposit in the North Ladoga Metamorphic Complex, southeastern Fennoscandian Shield, was produced by Barrovian-type (elevated-pressure) medium- to high-temperature metamorphism. The PT parameters of the metamorphic processes were evaluated using the technique of multiequilibrium thermobarometry (TWEEQU) at 610–700°C and 6–8 kbar. The metamorphism was associated with deformations and anatexis (partial melting) in a water-saturated system. The U–Pb monazite age (ID‑TIMS) of the Kitelä schists is 1800 Ma (the final stage of the Svecofennian orogeny). Evidence for the identified metamorphic event is found locally in high-strain zones among schists with low- to medium-pressure mineral assemblages that are common to the North Ladoga Metamorphic Complex and the Svecofennian Orogen as whole (Buchan-type metamorphism). The Kitelä schists were retrogressed at temperatures lower than 300°C. This retrogression occurred not during the final stage of the Late Svecofennian metamorphic event but was related to a younger low-temperature fluid-assisted overprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Here and below, mineral symbols are according to (Kretz, 1983). The additional symbols are: Ea for eastonite, Sdp for siderophyllite, Fbl for fibrolite, Als for aluminum silicates Al2SiO5 (kyanite or sillimanite), and L for silicate melt.

  2. Microprobe analyses of mineral are presented in Table ESM_1.xls (Supplementary) in the Russian and English on-line versions of the journal available at https://elibrary.ru/ and http://link.springer.com/, respectively, for authorized users.

REFERENCES

  1. Albee, A.L. and Chodos, A.A., Minor element content of coexistent Al2SiO5 polymorphs, Am. J. Sci., 1969, vol. 267, no. 3, pp. 310–316. https://doi.org/10.2475/ajs.267.3.310

    Article  Google Scholar 

  2. Anderson, P.A.M. and Kleppa, O.J., The thermochemistry of the kyanite–sillimanite equilibrium, Am. J. Sci., 1969, vol. 267, no. 3, pp. 285–290. https://doi.org/10.2475/ajs.267.3.285

    Article  Google Scholar 

  3. Andersson, U.B., Eklund, O., Fröjdö, S., and Konopelko, D., 1.8 Ga magmatism in the Fennoscandian shield: lateral variations in subcontinental mantle enrichment, Lithos, 2006, vol. 86, no. 1, pp. 110–136. https://doi.org/10.1016/j.lithos.2005.04.001

    Article  Google Scholar 

  4. Anovitz, L.M., Perkins, D., and Essene, E.J., Metastability in near-surface rocks of minerals in the system Al2O3–SiO2–H2O, Clays & Clay Minerals, 1991, vol. 39, no. 3, pp. 225–233. https://doi.org/10.1346/CCMN.1991.0390301

    Article  Google Scholar 

  5. Aranovich, L.Ya. and Podlesskii, K.K., The cordierite–garnet–sillimanite-quartz equilibrium: experiments and applications, in Kinetics and Equilibrium in Mineral Reactions, Saxena, S.K., Eds., Adv. (Springer, New York, 1983), pp. 173–198. https://doi.org/10.1007/978-1-4612-5587-1_6

  6. Aranovich, L.Ya. and Berman, R.G., Optimized standard state and solution properties of minerals. II. Comparisons, predictions, and applications, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1–2, pp. 25–37. https://doi.org/10.1007/s004100050233

    Article  Google Scholar 

  7. Baltybaev, Sh.K., Levchenkov, O.A., Glebovitsky, V.A., et al., Polychronous nature of metamorphic zoning: evidence from U–Pb and Pb–Pb dating of metamorphic rocks (Southern Karelia, Baltic Shield), Dokl. Earth Sci., 2005, vol. 401A, no. 3. pp. 361–363.

    Google Scholar 

  8. Baltybaev, Sh.K., Levchenkov, O.A., and Levsky, L.K., Svekofennskii poyas Fennoskandii: prostranstvenno-vremennaya korrelyatsiya ranneproterozoiskikh endogennykh protsessov (Svecofennian Belt of Fennoscandia: Spatiotemporal Correlation of Paleoproterozoic Endogenous Processes), St. Petersburg: Nauka, 2009.

  9. Baltybaev, Sh.K., Ovchinnikova, G.V., Glebovitskii, V.A., Alekseev, I.A., Vasil’eva, I.M., and Risvanova, N.G., Caledonian formation of gold-bearing sulfide depositions in early proterozoic gabbroids in the northern Ladoga region, Dokl. Earth Sci., 2017, vol. 476, no. 1, pp. 992–996. https://doi.org/10.1134/S1028334X17090112

    Article  Google Scholar 

  10. Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, no. 2, pp. 445–522. https://doi.org/10.1093/petrology/29.2.445

    Article  Google Scholar 

  11. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.

    Google Scholar 

  12. Berman, R.G., WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations, Geol. Surv. Can., Open File, 2007, No. 5462. https://doi.org/10.4095/223228

  13. Berman, R.G. and Aranovich, L.Ya., Optimized standard state and solution properties of minerals. i. model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1–2, pp. 1–24. https://doi.org/10.1007/s004100050232

    Article  Google Scholar 

  14. Berman, R.G., Aranovich, L.Ya., Rancourt, D.G., and Mercier, P.H.J., Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite, Am. Mineral., 2007, vol. 92, no. 1, pp. 139–150. https://doi.org/10.2138/am.2007.2051

    Article  Google Scholar 

  15. Bohlen, S.R., Wall, V.J., and Boettcher, A.L., Experimental investigations and geological applications of equilibria in the system FeO–TiO2–Al2O3–SiO2–H2O, Am. Mineral., 1983, vol. 68, nos 11-12, pp. 1049–1058.

    Google Scholar 

  16. Cameron, W.E. and Ashworth, J.R., Fibrolite and its relationship to sillimanite, Nature Phys. Sci., 1972, vol. 235, pp. 134–136. https://doi.org/10.1038/physci235134a0

    Article  Google Scholar 

  17. Chinner, G.A., Smith, J.V., and Knowles, C.R., Transition metal contents of Al2SiO5 polymorphs, Am. J. Sci., 1969, Schairer Vol., vol. 267A. P. 96–113.

  18. Dingwell, D.B., Pichavant, M., and Holtz, F., Experimental studies of boron in granitic melts, in Boron: Mineralogy, Petrology, and Geochemistry. Rev. Mineral. Geochem, 1996, vol. 33, pp. 331–386. https://doi.org/10.1515/9781501509223-010

    Google Scholar 

  19. Dolivo-Dobrovolsky, D., About permutational approach in geothermobarometry, 2006a. http://www.dimadd.ru/ en/Programs/about-permutational-approach-geothermobarometry.

  20. Dolivo-Dobrovolsky, D., The computer program TWQ_Comb. Version 1.2.0.4. 2006b. http://www.dimadd.ru/en/Programs/twqcomb.

  21. Dolivo-Dobrovolsky, D., The computer program TWQ_View. Version 1.2.0.22. 2006c. http://www.dimadd.ru/en/Programs/twqview.

  22. Essene, E.J., The current status of thermobarometry in metamorphic rocks, in Evolution of Metamorphic Belts, Daly, J.S. Cliff, R.A. and Yardley, B.W.D., Eds., Geol. Soc. London: Spec. Publ., 1989, vol. 43, pp. 1–44. https://doi.org/10.1144/GSL.SP.1989.043.01.02

  23. Frey, M., Bucher, K., and Frank, E., Alpine metamorphism along the geotraverse, Basel–Chiasso: a review, Eclogae Geol. Helv., 1980, vol. 73, no. 2, pp. 527–546. https://doi.org/10.5169/seals-164971

    Article  Google Scholar 

  24. Geologiya i petrologiya svekofennid Priladozh’ya (Geology and Petrology of Svecofennides of the Ladoga Region), St. Petersburg.: St. Petersb. Univ., 2000.

  25. Glebovitskii, V. A., Mineral facies as criteria for assessment of P-T metamorphic parameters, in Termo- i barometriya metamorficheskikh porod (Thermo- and Barometry of Metamorphic Rocks), Leningrad: Nauka, 1977, pp. 5–39.

    Google Scholar 

  26. Greenwood, H.J., AlIV–SiIV disorder in sillimanite and its effect on phase relations of the aluminum silicate minerals, Studies in Earth and Space Sciences: Geol. Soc. Amer. Mem, 1972, vol. 132, pp. 553–571. https://doi.org/10.1130/MEM132-p553

    Article  Google Scholar 

  27. Gulbin, Yu.L. P–T paths and modeling the evolution of metapelitic mineral assemblages in the MnNCKFMASH system: A case of Northern Ladoga area, Geol. Ore Depos., 2015, vol. 57, pp. 699–711. https://doi.org/10.1134/S1075701515080073

  28. Hariga, Yu. and Arima, M., Kyanite–sillimanite transition with excess quartz and corundum, J. Fac. Sci. Hokkaido Univ., 1975, 1975, Ser. 4, vol. 16, no. 4, pp. 357–366.

  29. Hemingway, B.S., Robie, R.A., Evans, H.T., and Kerrick, D.M., Heat capacities and entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the Al2SiO5 phase diagram, Am. Mineral., 1991, vol. 76, nos. 9–10, pp. 1597–1613.

    Google Scholar 

  30. Hemingway, B.S., On the Al2SiO5 triple point and the natural occurrence of two Al2SiO5 polymorphs under the same P-T conditions, U.S. Geol. Surv. Open-File Report, 1992, no. 92–298.

  31. Hemley, J.J., Montoya, J.W., Marinenko, J.W., and Luce, R.W., Equilibria in the system Al2O3–SiO2–H2O and some general implications for alteration/mineralization processes, Econ. Geol., 1980, vol. 75, no. 2, pp. 210–228. https://doi.org/10.2113/gsecongeo.75.2.210

    Article  Google Scholar 

  32. Holdaway, M.J., Stability of andalusite and the aluminum silicate phase diagram, Am. J. Sci., 1971, vol. 271, no. 2, pp. 97–131. https://doi.org/10.2475/ajs.271.2.97

    Article  Google Scholar 

  33. Holdaway, M.J., Mukhopadhyay, B., and Dutrow, B.L., Thermodynamic properties of stoichiometric staurolite H2Fe4Al18O48 and H6Fe2Al18Si8O48, Am. Mineral., 1995, vol. 80, nos 5-6, pp. 520–533.

    Article  Google Scholar 

  34. Holland, T.J.B. and Powell, R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 2011, vol. 29, no. 3, pp. 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

    Article  Google Scholar 

  35. Hollister, L.S., Metastable paragenetic sequence of andalusite, kyanite, and sillimanite, Kwoiek area, British Columbia, Am. J. Sci., 1969, vol. 267, no. 3, pp. 352–370. https://doi.org/10.2475/ajs.267.3.352

    Article  Google Scholar 

  36. Homam, S.M., Boyle, A.P., and Atherton, M.P., Syn- to post-kinematic fibrolite–biotite intergrowths in the Ardara aureole, NW Ireland, J. Sci., Isl. Rep. Iran, 2002, vol. 13, no. 4, pp. 327–337.

    Google Scholar 

  37. Kerrick, D.M., Dislocation strain energy in the Al2SiO5 polymorphs, Phys. Chem. Mineral., 1986, vol. 13, no. 4, pp. 221–226. https://doi.org/10.1007/BF00308272

    Article  Google Scholar 

  38. Kerrick, D.M., Fibrolite in contact aureoles of Donegal, Ireland, Am. Mineral., 1987, vol. 72, nos. 3–4, pp. 240–254.

    Google Scholar 

  39. Kerrick, D.M. and Speer, J.A., The role of minor element solid solution on the andalusite–sillimanite equilibrium in metapelites and peraluminous granitoids, Am. J. Sci., 1988, vol. 288, no. 2, pp. 152–192. https://doi.org/10.2475/ajs.288.2.152

    Article  Google Scholar 

  40. Kerrick, D.M., The Al2SiO5 polymorphs, Rev. Mineral., 1990, vol. 22.

  41. Kerrick, D.M. and Woodsworth, G.J., Aluminum silicates in the Mount Raleigh pendant, British Columbia, J. Metamorph. Geol., 1989, vol. 7, no. 5, pp. 547–563. https://doi.org/10.1111/j.1525-1314.1989.tb00617.x

    Article  Google Scholar 

  42. Kievlenko E.Ya., Chuprov V.I., Dramsheva E.E. Dekorativnye kollektsionnye mineraly (Decorative Collection Minerals), Moscow: Nedra, 1987.

  43. Konopelko, D. and Eklund, O., Timing and geochemistry of potassic magmatism in the eastern part of the Svecofennian domain, NW Ladoga Lake region, Russian Karelia, Precambrian Res., 2003, vol. 120, no. 1, pp. 37–53. https://doi.org/10.1016/S0301-9268(02)00141-9

    Article  Google Scholar 

  44. Korsman, K. and Glebovitsky, V., Raahe-Ladoga Zone Structure-Lithology, Metamorphism and Metallogeny: a Finnish-Russian Cooperation Project 1996–1999. Map 2: Metamorphism of the Raahe–Ladoga Zone 1 : 1000000. Geol. Surv. Finland, 1999.

  45. Kotova, L.N., Kotov, A.B., Glebovitskii, V.A., Podkovyrov, V.N., and Savatenkov, V.M., Source rocks and provenances of the Ladoga Group siliciclastic metasediments (Svecofennian Foldbelt, Baltic Shield): results of geochemical and Sm-Nd isotopic study, Stratigraphy. Geol. Correlation, 2009, vol. 17, no. 1, pp. 1–19. https://doi.org/10.1134/S0869593809010018

    Article  Google Scholar 

  46. Kretz, R., Symbols for rock-forming minerals, Am. Mineral., 1983, vol. 68, nos. 1–2, pp. 277–279.

    Google Scholar 

  47. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmochim. Acta, 1973, vol. 37, no. 3, pp. 485–494. https://doi.org/10.1016/0016-7037(73)90213-5

    Article  Google Scholar 

  48. Kwak, T.A.P., Justification for both ionic and thermal reactions in Grenville province pelitic rocks near Sudbury, Ontario, Canada, Can. J. Earth Sci., 1971, vol. 8, no. 11, pp. 1333–1354. https://doi.org/10.1139/e71-124

    Article  Google Scholar 

  49. Ladozhskaya proterozoiskaya struktura (geologiya, glubinnoe stroenie i minerageniya) (Proterozoic Ladoga Structure: Geology, Deep Structure, and Metallogeny), Sharov, N.V, Eds., Petrozavodsk: Karelain SC, RAS, 2020.

  50. Larson, T.E. and Sharp, Z.D., Stable isotope constraints on the Al2SiO5 'triple-point' rocks from the Proterozoic Priest pluton contact aureole, New Nexico, USA, J. Metamorph. Geol., 2003, vol. 21, no. 8, pp. 785–798. https://doi.org/10.1046/j.1525-1314.2003.00481.x

    Article  Google Scholar 

  51. Le Breton, N. and Thompson, A.B., Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis, Contrib. Mineral. Petrol., 1988, vol. 99, no. 2, pp. 226–237. https://doi.org/10.1007/BF00371463

    Article  Google Scholar 

  52. Ludwig, K.R., PBDAT for MS-DOS: a computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data, version 1.00a, U.S. Geol. Surv. Open-File Report, 1991, no. 88–542. https://doi.org/10.3133/ofr88542

  53. Ludwig, K.R., ISOPLOT/Ex: a geochronological toolkit for Microsoft Excel, version 2.05, Berkley Geochronol. Center Special. Publ., 1999, no. 1a.

  54. Martignole, J. and Sisi, J.C., Cordierite–garnet–H2O equilibrium: a geological thermometer, barometer and water fugacity indicator, Contrib. Mineral. Petrol., 1981, vol. 77, no. 1, pp. 38–46. https://doi.org/10.1007/BF01161500

    Article  Google Scholar 

  55. Mukherjee, S., Deformation Microstructures in Rocks, Berlin–Heidelberg: Springer-Verlag, 2013. https://doi.org/10.1007/978-3-642-25608-0

    Book  Google Scholar 

  56. Nagel, T., De Capitani, C., and Frey, M., Isograds and P-T evolution in the eastern Lepontine Alps (Graubunden, Switzerland), J. Metamorph. Geol., 2002, vol. 20, no. 3, pp. 309–324. https://doi.org/10.1046/j.1525-1314.2002.00368.x

    Article  Google Scholar 

  57. Okrusch, M. and Evans, B.W., Minor element relationships in coexisting andalusite and sillimanite, Lithos, 1970, vol. 3, no. 3, pp. 261–268. https://doi.org/10.1016/0024-4937(70)90078-2

    Article  Google Scholar 

  58. Robie, R.A. and Hemingway, B.S., Entropies of kyanite, andalusite, and sillimanite: additional constraints on the pressure and temperature of the Al2SiO5 triple point, Am. Mineral., 1984, vol. 69, nos. 3–4, pp. 298–306.

    Google Scholar 

  59. Rundqvist, N.D. and Moskaleva, G.P., On Kitelä almandines, Zap. Vsesoyuz. Mineral. O-va, 1985, vol. 114, no. 5, pp. 581–585.

    Google Scholar 

  60. Salje, E., Heat capacities and entropies of andalusite and sillimanite: the influence of fibrolitization on the phase diagram of the Al2SiO5 polymorphs, Am. Mineral., 1986, vol. 71, nos. 11–12, pp. 1366–1371.

    Google Scholar 

  61. Salje, E. and Werneke, Chr., The phase equilibrium between sillimanite and andalusite as determined from lattice vibrations, Contrib. Mineral. Petrol., 1982, vol. 79, no. 1, pp. 56–67. https://doi.org/10.1007/BF00376961

    Article  Google Scholar 

  62. Shurilov, A.V., Polekhovskii, Yu.S., and Tarasova, I.P., Radioaktivnaya mineralizatsiya Impilakhtinskogo poligona geologicheskogo fakul’teta SPbGU (Severnoe Priladozh’e) (Radioactive Mineralization of the Impilakhta Test Site of the Geological Faculty of St. Petersburg Geological University, Northern Ladoga Region), St. Petersburg: St. Petersb. Gos. Univ., 2013.

  63. Stebbins, J.F., Burnham, C.W., and Bish, D.L., Tetrahedral disorder in fibrolitic sillimanite: comparison of 29Si NMR and neutron diffraction data, Am. Mineral., 1993, vol. 78, nos. 3–4, pp. 461–464.

    Google Scholar 

  64. Velikoslavinskii, D.A., Sravnitel’naya kharakteristika regional’nogo metamorfizma umerennykh i nizkikh davlenii (na primere Severo-Baikal’skoi i Severo-Ladozhskoi oblastei razvitiya metamorficheskoi zonal’nosti) (A Comparative Characteristics of Medium and Low-Pressure Regional Metamorphism: Evidence from Northern Baikalian and Northern Ladoga Metamorphic Zoning Areas), Leningrad: Nauka, 1972.

  65. Vernon, R.H., Microstructural interpretation of some fibrolitic sillimanite aggregates, Mineral. Mag., 1975, vol. 40, no. 311, pp. 303–306. https://doi.org/10.1180/minmag.1975.040.311.10

    Article  Google Scholar 

  66. Vernon, R.H., Formation of late sillimanite by hydrogen metasomatism (base-leaching) in some high-grade gneisses, Lithos, 1979, vol. 12, no. 2, pp. 143–152. https://doi.org/10.1016/0024-4937(79)90045-8

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank D.V. Dolivo-Dobrovolsky (Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences) for assistance in monazite photographing and the reviewers A.L. Perchuk and O.G. Safonov for valuable comments that led us to improve the manuscript.

Funding

This study was conducted under government-financed research project 0132-2019-0013 for the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, and was supported by Russian Foundation for Basic Research, project no. 17-05-00265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Azimov.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimov, P., Rizvanova, N.G. Evidence of Late Svecofennian Elevated-Pressure Metamorphism in the North Ladoga Zonal Metamorphic Complex, Southeastern Fennoscandian Shield. Petrology 29, 300–314 (2021). https://doi.org/10.1134/S0869591121020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121020028

Keywords:

Navigation