Skip to main content
Log in

Rapakivi Granites of the Kodar Complex (Aldan Shield): Age, Sources, and Tectonic Setting

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports geochemical, geochronological (ID–TIMS zircon U–Pb) and isotope–geochemical (Nd, Pb) study of granitoids of the Kodar complex developed in the western part of the Aldan shield. It has been established that these rocks can be classified as postcollisional A–type rapakivi granites, which together with the mafic–ultramafic rocks of the Chinei complex compose a single magmatic association formed within 1876 ± 4–1859 ± 2 Ma. The massifs of this association are a part of the giant South Siberian magmatic belt over 2500 km in length, which was formed at the final stage (1.88–1.84 Ga) of evolution of the Paleoproterozoic orogen. Globally, this belt is the largest stitching suture, which marks the formation of the Siberian craton and its entrance into the Paleoproterozoic Nuna supercontinent. The formation of the initial magmas of the Kodar granitoids was related to the mantle–crustal interaction during the mixing of primary mafic mantle magmas or their derivatives with anatectic melts derived through partial melting of the Archean lower continental crust of the region under the thermal influence of mafic magma. The crustal component in the source clearly predominates and has a heterogeneous nature. The mantle component is mainly represented by ancient enriched mantle, with the possible contribution of the OIB–type component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Anderson, J.L., Proterozoic anorogenic granite plutonism of North America, Proterozoic Geology: Selected Papers from an International Proterozoic Symposium, Medaris, L.G., Byers, C.W., Mickelson, D.M., and Shnaks, W.C., Eds., Geol. Soc. Amer. Mem., 1983, vol. 161, pp. 133–154.

  2. Barker, F., Wones, D.R., Sharp, W.N., and Desborough, G.A., The pikes peak batholith, Colorado Front Range, and a model for the origin of the gabbro–anorthosite–syenite–potassic granite suite, Geol. Soc. Amer. Mem., 1975, vol. 2, pp. 97–160.

    Google Scholar 

  3. Bettencourt, J.S., Tosdal, R.M., Leite, W.B., and Payolla, B.L., Mesoproterozoic rapakivi granites of the Rondonia tin province, southwestern border of the Amazonian Craton, Brazil – reconnaissance U–Pb geochronology and regional implications, Precambrian Res., 1999, vol. 95, pp. 41–67.

    Article  Google Scholar 

  4. Bogatikov, O.A., Ryabchikov, I.D., Kononova, V.A., et al., Lamproity (Lamproires), Moscow: Nauka, 1991.

    Google Scholar 

  5. Bonin, B., Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal sources? A review, Lithos, 2004, vol. 78, pp. 1–24.

    Article  Google Scholar 

  6. Bonin, B., A-type granites and related rocks: evolution of a concept, problem and prospects, Lithos, 2007, vol. 97, pp. 1–29.

    Article  Google Scholar 

  7. Clemens, J.D. and Vielzeuf, D., Constraints on melting and magma production in the crust, Earth Planet. Sci. Lett., 1987, vol. 86, pp. 287–306.

    Article  Google Scholar 

  8. Collins, W.J., Beams, S.D., White, A.J.R., and Chappell, B.W., Nature and origin of A-type granites with particular reference to southeastern Australia, Contrib. Mineral. Petrol., 1982, vol. 80, pp. 189–200.

    Article  Google Scholar 

  9. Condie, K.C. and Aster, R.C., Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth, Precambrian Res., 2010, vol. 180, pp. 227–236.

    Article  Google Scholar 

  10. Creaser, R.A., Price, R.C., and Wormald, R.J., A–type granites revisted: assessment of residual source, Geology, 1991, vol. 19, pp. 163–166.

    Article  Google Scholar 

  11. Dall’Agnol, R. and Oliveira, D.C., Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brazil: implications for classification and petrogenesis of A-type granites, Lithos, 2007, vol. 93, pp. 215–233.

    Article  Google Scholar 

  12. DePaolo, D.J., Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization, Earth Planet. Sci. Lett., 1981, vol. 52, pp. 177–184.

    Google Scholar 

  13. Donskaya, T.V., Paleoproterozoic Granitoid Magmagism of the Siberian Craton, Extended Abstract of Doctoral (Geol.–Min.) Dissertation, Irkutsk: IZK SO RAN, 2019.

  14. Donskaya T.V., Bibikova E.V., Mazukabzov A.M., et al., The Primorsky granitoid complex of western Cisbaikalia: geochronology and geodynamic typification, Russ. Geol. Geophys., 2003, vol. 44, no. 10, pp. 968–979.

    Google Scholar 

  15. Donskaya, T.V., Gladkochub, D.P., Kovach, V.P., and Mazukabzov, A.M., Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian Craton, Petrology, 2005, vol. 13, no. 3, pp. 229–252.

    Google Scholar 

  16. Donskaya, T.V., Bibikova, E.V., Gladkochub, D.P., et al., Petrogenesis and age of the felsic volcanic rocks from the North Baikal Volcanoplutonic Belt, Siberian Craton, Petrology, 2008, vol. 16, no. 5, pp. 422–447.

    Article  Google Scholar 

  17. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., et al., Paleoproterozoic granitoids of the Chunya and Kutima complexes (southern Siberian Craton): age, petrogenesis, and geodynamic setting, Russ. Geol. Geophys., 2013, vol. 54, no. 3, pp. 283–296.

    Article  Google Scholar 

  18. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., et al., Sayan–Biryusa volcanoplutonic belt (southern Siberian craton): age and petrogenesis, Russ. Geol. Geophys., 2019, vol. 60, no. 1, pp. 14–32.

    Article  Google Scholar 

  19. Eby, G.N., Chemical subdivision of A-type granitoids: petrogenetic and tectonic implications, Geology, 1992, vol. 20, pp. 641–644.

    Article  Google Scholar 

  20. Fedorovsky, V.S., Stratigrafiya nizhnego proterozoya khrebtov Kodar i Udokan (Vostochnaya Sibir’) (Paleoproterozoic Stratigraphy of the Kodar and Udokan Ranges (East Siberia), Moscow: Nauka, 1985.

  21. Frost, C.D. and Frost, B.R., Reduced rapakivi-type granites: the tholeiite connection, Geology, 1997, vol. 25, pp. 647–650.

    Article  Google Scholar 

  22. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., et al., The Siberian craton and its evolution in terms of the Rodinia hypothesis, Episodes, 2006, vol. 29, pp. 169–174.

    Article  Google Scholar 

  23. Glebovitsky, V.A., Khil’tova, V.Ya., and Kozakov, I.K., Tectonics of the Siberian Craton: interpretation of geological, geophysical, geochronological, and isotopic geochemical data, Geotectonics, 2008, vol. 42, no. 1, pp. 8–20.

    Article  Google Scholar 

  24. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  25. Gongal’skii, B.I., Sukhanov, M.K., and Gol’tsman, Yu.V., Sm–Nd isotope system of the Chinei anorthosite–gabbronorite pluton (Eastern Transbaikalia), Problemy geologii rudnykh mestorozhdenii, mineralogii, petrologii i geokhimii (Problems of Geology of Ore Deposits, Mineralogy, Petrology, and Geochemistry), Moscow: IGEM RAN, 2008, pp. 57–60

    Google Scholar 

  26. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (tret’e pokolenie). Seriya Aldano–Zabaikal’skaya. List O–50 (Bodaibo) (State Geological Map of the Russian Federation on a Scale 1 : 1 000 000 (3rd Generation). Aldan–Transbaikalia Series. Sheet O–50 (Bodaibo), St. Petersburg: VSEGEI, 2010.

  27. Gusev, G.S. and Khain, V.E., On relations of the Baikal–Vitim, Aldan–Stanovoy, and Mongol–Okhotsk terranes (southern Middle Siberia), Geotektonka, 1995, no. 5, pp. 68–82.

  28. Haapala, I. and Rämö, O.T., Tectonic setting and origin of the Proterozoic rapakivi granites of southeastern Fennoscandia, Trans. R. Soc, Edinburg: Earth Sci., 1992, vol. 83, p. 165–171.

    Google Scholar 

  29. Ivanov, A. I., Lifshits, V. I., Perevalov, O. V., et al., Dokembrii Patomskogo nagor’ya (Precambrian of the Patom Highland), Moscow: Nedra, 1995.

  30. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  31. Keto, L.S. and Jacobsen, S.B., Nd and Sr isotopic variations of Early Paleozoic oceans, Earth Planet. Sci. Lett., 1987, vol. 84, pp. 27–41.

    Article  Google Scholar 

  32. Kleeman, G.J. and Twist, D., The compositionally-zoned sheet-like granite pluton of the Bushveld complex: evidence bearing on the nature A–type magmatism, J. Petrol., 1989, vol. 30, pp. 1383–1414.

    Article  Google Scholar 

  33. Kotov, A.B., Boundary Conditions of Geodynamic Models of the Crustal Growth of the Aldan Shield, Extended Abstract of Doctoral (Geol.–Min.) Dissertation, St. Petersburg: Izd. SPbGU, 2003.

  34. Kotov A.B., Shemyakin V.M., Sal’nikova E.B., Kovach V.P. Formation stages and isotope structure of the continental crust of the Sutam Block, Aldan Shield: evidence from Sm-Nd isotope systematics of granitoids, Dokl. Earth Sci., 1999, vol. 367, no. 5, pp. 695–697.

    Google Scholar 

  35. Kotov, A.B., Sal’nikova, E.B., Glebovitsky, V.A., et al., Sm-Nd isotopic provinces of the Aldan Shield, Dokl. Earth Sci., 2006, vol. 410, no. 7, pp. 1066–1069.

    Article  Google Scholar 

  36. Kovach, V.P., Kotov, A.B., Gladkochub, D.P., et al., Age and sources of metasandstones of the Chinei Subgroup of the Udokan Group, Aldan Shield: results of U–Th–Pb geochronological (LA–ICP–MS) and Nd isotope studies, Geodinamicheskaya evolyutsiya litosfery Tsentral’no–Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). Materialy nauchnogo soveshchaniya. (Geodynamic Evoluion of Lithosphere of the Central Asian Mobile Belt: from Ocean to Continent. Proc. Conference), Irkutsk: IZK SO RAN, 2017, pp. 124–125.

  37. Kovach, V.P., Kotov, A.B., Gladkochub, D.P., et al., Age and nature of provenances of metasadnstones of the Kemen Subgroup of the Udokan Group (Aldan Shield): results of U–Th–Pb geochronological and Lu–Hf isotope studies of detrital zircons, Geodinamicheskaya evolyutsiya litosfery Tsentral’no–Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). Materialy soveshchaniya (Proc. Conf. Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt: from Ocean to Continent), 2018, pp. 120–121.

  38. Kramers, J.D. and Tolstikhin, I.N., Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust, Chem. Geol., 1997, vol. 139, pp. 75–110.

    Article  Google Scholar 

  39. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  40. Larin, A.M., Granity rapakivi i assotsiiruyushchie porody (Rapakivi Granites and Associated Rocks), St. Petersburg: Nauka, 2011.

  41. Larin, A.M., Ulkan–Dzhugdzhur ore-bearing anorthosite–rapakivi granite–peralkaline granite association, Siberian Craton: age, tectonic setting, sources, and metallogeny, Geol. Ore Deposits, 2014, vol. 56, no. 4, pp. 257–280.

    Article  Google Scholar 

  42. Larin, A.M., Nemchin, A.A., Krymskii, R.Sh., and Kovach, V.P., Sm-Nd isotope limitations on the genesis of granite rapakivi of the Kodar Complex, the Western Aldan–Stanovoi Shield, Dokl. Earth Sci., 1999, vol. 369, no. 8, pp. 1195–1197.

    Google Scholar 

  43. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., New data on the age of granites of the Kodar and Tukuringra complexes, Eastern Siberia: geodynamic constraints, Petrology, 2000, vol. 8, no. 3, pp. 238–248.

    Google Scholar 

  44. Larin, A.M., Sal’nikova, E.B., Kotov, A.B., et al., The North Baikal Volcanoplutonic Belt: age, formation duration, and tectonic setting, Dokl. Earth Sci., 2003, vol. 392, no. 7, pp. 963–967.

    Google Scholar 

  45. Larin, A.M., Sal’nikova, E.B., Kotov, A.B., et al., Early Proterozoic Syn- and postcollision granites in the northern part of the Baikal Fold Area, Stratigraphy. Geol. Correlation, 2006, vol. 14, no. 5, pp. 463–474.

    Article  Google Scholar 

  46. Larin, A.M., Kotov, A.B., Velikoslavinsky, S.D., et al., Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments, Petrology, 2012, vol. 20, no. 3, pp. 218–238.

    Article  Google Scholar 

  47. Levitskii, V.I., Mel’nikov, A.I., Reznitskii, L.Z., et al., Early Proterozoic postcollisional granitoids in southwestern Siberian Craton, Russ. Geol. Geophys., 2002, vol. 43, No. 8, pp. 711–731.

    Google Scholar 

  48. Liégeois, J–P., Navez, J., Hertogen, J., and Black, R., Contrasting origin of post–collisional high–K calc–alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization, Lithos, 1998, vol. 45, pp. 1–28.

    Article  Google Scholar 

  49. Litvinovsky, B.A., Jahn Bor–Ming, Zanilevich, A.N., et al., Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas, Chem. Geol., 2002, vol. 189, pp. 105–133.

    Article  Google Scholar 

  50. Ludwig, K.R., Isoplot – a plotting and regression program for IBM–PC compatible computers, version 2, US Geol. Surv. Open–Fil Rep., 1988, vol. 62, pp. 88–557.

    Google Scholar 

  51. Ludwig, K.R., Pbdat for MS–DOS, version 1.21, U.S. Geol. Survey Open–File Rept., 1991, no. 88–542.

  52. Ludwig, K.R., Isoplot 3.70. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 2003, vol. 4.

    Google Scholar 

  53. Manhes, G., Allegre, C.J., and Provost, A., U–Th–Pb systematics of the eucrite “juvinas”. Precise age determination and evidence for exotic lead, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 2247–2264.

    Article  Google Scholar 

  54. Manuilova, M.M., Petrology of Granites of the Kodar Massif. Olekma–Vitim Mountainous System, Tr. LAGED AN SSSR, 1960, vol. 9, pp. 360–329.

    Google Scholar 

  55. Mattinson, J.M., A study of complex discordance in zircons using step-wise dissolution techniques, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 117–129.

    Article  Google Scholar 

  56. Mel’nikov, N.N., Errors of the double spiking technique in the isotopic analysis of common lead, Geochem. Int., 2005, no. 12, pp. 1228–1234.

  57. Millisenda, C.C., Liew, T.C., Hofmann, A.W., and Köhler, H., Nd isotopic mapping of the Sri Lanka basement: update and additional constraints from Sr isotopes, Precambrian Res., 1998, vol. 66, pp. 95–110.

    Article  Google Scholar 

  58. O’Neil, J. and Carlson, R.W., Building Archaean cratons from Hadean mafic crust, Science, 2017, vol. 355, pp. 1199–1202.

    Article  Google Scholar 

  59. Neymark, L.A., Larin, A.M., Yakovleva, S.Z., et al., New age data on rocks of the Akitkan Group of the Baikal–Patom fold area: evidence from U–Pb zircon dating, Dokl. Akad. Nauk SSSR, 1991, vol. 320, no. 1, pp. 182–186.

    Google Scholar 

  60. Neymark, L.A., Kovach, V.P., Nemchin, A.A., et al., Late Archaean intrusive complexes in the Olekma granite–greenstone terrane (Eastern Siberia): geochemical and isotopic study, Precambrian Res., 1993, vol. 62, pp. 453–472.

    Article  Google Scholar 

  61. Neymark, L.A., Larin, A.M., Nemchin, A.A., et al., Anorogenic nature of magmatism in the Northern Baikal Volcanic Belt: evidence from geochemical, geochronological (U_Pb), and isotopic (Pb, Nd) data, Petrology, 1998, vol. 6, no. 2, pp. 124–148.

    Google Scholar 

  62. Nozhkin A.D., Bibikova E.V., Turkina O.M., Ponomarchuk V.A., U-Pb, Ar-Ar, and Sm-Nd isotope-geochronological study of porphyritic subalkalic granites of the Taraka Pluton (Yenisei Range), Russ. Geol. Geophys., 2003, vol. 44, no. 9, pp. 842–851.

    Google Scholar 

  63. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element distribution diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  64. Podkovyrov, V.N., Kotov, A.B., Larin, A.M., et al., Sources and provenances of Lower Proterozoic terrigenous rocks of the Udokan Group, southern Kodar–Udokan Depression: results of Sm-Nd isotopic investigations, Dokl. Earth Sci., 2006, vol. 408, no. 4, pp. 518–522.

    Article  Google Scholar 

  65. Poitrasson, F., Duthou, J.–L., and Pin, C., The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: example of the Corsican province (SE France), J. Petrol., 1995, vol. 36, pp. 1251–1274.

    Article  Google Scholar 

  66. Poller, U., Gladkochub, D., Donskaya, T., et al., Multistage magmatic and metamorphic evolution in the southern Siberian Craton: Archean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS, Precambrian Res., 2005, vol. 136, pp. 353–368.

    Article  Google Scholar 

  67. Popov, N.V., Kotov, A.B., Postnikov, E.B., et al., Age and tectonic position of the Chiney layered massif, Aldan Shield, Dokl. Earth Sci., 2009, vol. 424, no. 4, pp. 64–67.

    Article  Google Scholar 

  68. Pukhtel’, I.S., and Zhuravlev, D.Z., Paleoproterozoic picrites of the Olekma granite–greenstone tarrane : isotopic Nd–systematics and petrogenesis, Geokhimiya, 1992, no. 8, pp. 1111–1123.

  69. Rämö, O.T. and Haapala, I., Rapakivi granite magmatism: a global review with emphasis on petrogenesis, Petrology and Geochemistry of Magmatic Suites of Rocks in the Continental and Oceanic Crust, Demaiffe, D., Eds., Universite Libre de Bruxelles. Royal Museum for Central Africa (Tervuren), 1996, pp. 177–200.

  70. Rudnick, R.L. and Gao, S., Composition of the continental crust, The Crust (Ed. R.L. Rudnick), Treatise on Geochemistry, Holland, H.D., and Turekian, K.K., Elsevier, 2004, vol. 3, p. 1–64.

  71. Sal’nikova, E.B., Kovach, V.P., Kotov, A.B., and Nemchin, A.A., Evolution of continental crust in the Western Aldan Shield: evidence from Sm-Nd systematics of granitoids, Petrology, 1996, vol. 4, no. 2, pp. 105–118.

    Google Scholar 

  72. Salop, L.I., Geologiya Baikal’skoi gornoi oblasti, T. 2. Magmatizm, tektonika i istoriya geologicheskogo razvitiya (Geology of the Baikal Mountainous Area. Volume 2. Magmatism, Tectonics, and Geological Evolution), Moscow: Nedra, 1967.

  73. Shirey, S.B., Kamber, B.S., Whitehouse, M.J., et al., A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: implications for the onset of plate tectonic subduction, When Did Plate Tectonics Begin on Planet Earth?, Condie, K.S., and Pease. V., Eds., Geol. Soc. Amer. Spec. Pap., 2008, vol. 440, pp. 1–29.

  74. Skjerlie, K.P. and Johnston, A.D., Vapor absent melting at 10 kbar of magmas of biotite- and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites, Geology, 1992, vol. 20, pp. 263–266.

    Article  Google Scholar 

  75. Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotopic composition by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.

    Article  Google Scholar 

  76. Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.

    Article  Google Scholar 

  77. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. London: Spec. Publ., 1989, no. 42, pp. 313–345.

  78. Sviridenko, V.T., Rapakivi granite formation of the western Aldan Shield, Izv. AN SSSR., Ser. Geol., 1975, no. 9, pp. 25–39.

  79. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford–London–Edinburgh–Boston–Palo Alto–Melbourne: Blackwell Scientific Publications, 1985.

    Google Scholar 

  80. Turkina, O.M., Nozhkin, A.D., Bayanova, T.B., Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian Craton, Petrology, 2006, vol. 14, no. 3, pp. 262–283.

    Article  Google Scholar 

  81. Velikoslavinsky, D.A., Birkis, A.P., Bogatikov, O.A., et al., Anortozit–rapakivigranitnaya formatsiya Vostochno–Evropeiskoi platformy (Anorthosite–Rapakivi Granite Formation of the East European Platform), Leningrad: Nauka, 1978.

  82. Velikoslavinsky, S.D., Kotov, A.B., Sal’nikova, E.B., et al., Protoliths of the metamorphic rocks of the Fedorov Complex, Aldan Shield: character, age, and geodynamic environments of origin, Petrology, 2006, vol. 14, no. 1, pp. 21–38.

    Article  Google Scholar 

  83. Vodovozov, V.Yu. and Zverev, A.R., Paleomagnetism of Paleoproterozoic complexes of the southern Siberian Crton (Udokar and Kodar Ranges), Paleomagnetizm i magnetizm gornykh porod: teoriya, praktika, eksperiment. Vserossiiskaya shkola–seminar po problemam paleomagnetizma i magnetizma gornykh porod. Nauchnyi sovet po geomagnetizmu RAN (Paleomagnetism and Magnetism of Rocks: Theory, Practice, Experiment. All-Russian School-Seminar on Problems of Paleomagnetism and Magnetism of Rocks. RAN Council on Paleomagnetism), Moscow: IFZ im. O.Yu. Shmidta RAN, 2015, pp. 27–33.

  84. Watson, E.B. and Harrison, T.M., Zircon saturated revisited. Temperature and composition effects in variety of crustal magma types, Earth Planet. Sci. Lett., 1983, vol. 64, pp. 295–304.

    Article  Google Scholar 

  85. Watson, E.B., The role of accessory minerals in granitoid geochemistry, Hutton Conference of the Origin of Granites. Univ. Edinburgh, 1987, pp. 209–213.

    Google Scholar 

  86. Weaver, B.L., Hogan, J.P., Gilbert, M.C., and Lambert, D.D., Origin of A-type granites from the southern Oklahoma aulacogen: the importance of crystal fractionation of mafic magmas, EOS, 1992, vol. 73, p. 347.

    Google Scholar 

  87. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  88. Zaraisky, G.P., Aksyuk, A.M., Devyatova, V.N., et al., The Zr/Hf ratio as a fractionation indicator of rare-metal granites, Petrology, 2009, vol. 17, no. 1, pp. 25–45.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Yarmolyuk and A.A. Tsygankov for valuable advices and constructive comments that significantly improved the manuscript. L.B. Makar’ev and A.N. Timashkov (VSEGEI) are thanked for kindly given geological materials and fruitful discussion of problems of granitoid magmatism of the Aldan shield.

Funding

The studies were supported by the Russian Foundation for Basic Research (project nos. 17-05-00659, 18-05-00403, 19-05-00647, 20-05-00401), Russian Science Foundation (project nos. 19-17-00205), the State Tasks IPGG RAS (project nos. 0153-2019-0002, 0153-2019-0001 and 0153-2019-0001) and the Government of the Russian Federation (project no. 075-15-2019-1883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Larin.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, A.M., Kotov, A.B., Kovach, V.P. et al. Rapakivi Granites of the Kodar Complex (Aldan Shield): Age, Sources, and Tectonic Setting. Petrology 29, 277–299 (2021). https://doi.org/10.1134/S0869591121030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121030036

Keywords:

Navigation