Skip to main content

Advertisement

Log in

Video placement and delivery in edge caching networks: Analytical model and optimization scheme

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

How to place and deliver the videos through edge caching networks is a hot and open issue on releasing the heavy loads of backhaul link caused by explosive growth of data traffic and frequent requests. To address this issue, a joint video caching and transmission scheme is studied. In specific, the successful transmission probability, energy efficiency and system average delay are first derived based on the stochastic geometry theory. A video caching optimization problem is then formulated to balance the energy efficiency and system average delay. Considering the high complexity of the problem solution, we propose a genetic-based video placement and delivery algorithm to obtain a near-optimal solution. The accuracy of the proposed algorithm is finally validated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ericsson (2017) Ericsson Mobility Report. [Online]. Available: http://www.ericsson.com/en/mobility-report/reports/november-2017

  2. Wang X, Chen M, Taleb T, Ksentini A, Leung VCM (2014) Cache in the air: Exploiting content caching and delivery techniques for 5G systems. IEEE Commun Mag 52:131–139

    Article  Google Scholar 

  3. Poularakis K, Iosifidis G, Sourlas V, Tassiulas L (2016) Exploiting caching and multicast for 5G wireless networks. IEEE Trans Wirel Commun 15:2995–3007

    Article  Google Scholar 

  4. Chen Z, Lee J, Quek TQS, Kountouris M (2017) Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Trans Wirel Commun 16:3401–3415

    Article  Google Scholar 

  5. Tao M, Chen E, Zhou H, Yu W (2016) Content-centric sparse multicast beamforming for cache-enabled cloud RAN. IEEE Trans Wirel Commun 15:6118–6131

    Article  Google Scholar 

  6. Zhou H, Tao M, Chen E, Yu W (2015) Content-centric multicast beamforming in cache-enabled cloud radio access networks. In: IEEE Global Communications Conference(GLOBECOM), pp 1–6

  7. Liu D, Yang C (2016) Cache-enabled heterogeneous cellular networks: Comparison and tradeoffs. In: International Conference on Communications(ICC), pp 1–6

  8. Wu Q, Li GY, Chen W, Ng DWK, Schober R (2017) An overview of sustainable green 5G networks. IEEE Wirel Commun 24:72–80

    Article  Google Scholar 

  9. Xu F, Tao M, Liu K (2017) Fundamental tradeoff between storage and latency in cache-aided wireless interference networks. IEEE Trans Inform Theory 63:7464–7491

    Article  MathSciNet  Google Scholar 

  10. Liao J, Wong KK, Khandaker MRA, Zheng Z (2016) Optimizing cache placement for heterogeneous small cell networks. IEEE Commun Lett 21:120–123

    Article  Google Scholar 

  11. Gabry F, Bioglio V, Land I (2016) On energy-efficient edge caching in heterogeneous networks. IEEE J Sel Areas Commun 34:3288–3298

    Article  Google Scholar 

  12. Wen W, Cui Y, Zheng F-C, Jin S, Jiang Y (2017) Random caching based cooperative transmission in heterogeneous wireless networks. In: International Conference on Communications(ICC), pp 1–6

  13. Cui Y, Jiang D (2017) Analysis and optimization of caching and multicasting in large-scale cache-enabled heterogeneous wireless networks. IEEE Trans Wirel Commun 250-264:16

    Google Scholar 

  14. Zhao Z, Peng M, Ding Z, Wang W, Poor HV (2016) Cluster content caching: an energy-efficient approach to improve quality of service in cloud radio access networks. IEEE J Sel Areas Commun 34:1207–1221

    Article  Google Scholar 

  15. Chen B, Yang C, Molisch AF (2017) Cache-enabled device-to-device communications: Offloading gain and energy cost. IEEE Trans Wirel Commun 16:4519–4536

    Article  Google Scholar 

  16. Sun R, Wang Y, Cheng N (2020) Qoe-driven Transmission-Aware Cache Placement and Cooperative Beamforming Design in cloud-RANs. IEEE Trans Veh Technol 69:636–650

    Article  Google Scholar 

  17. Rahman GMS, Peng M, Yan S (2020) learning based joint cache and power allocation in fog radio access networks. IEEE Trans Veh Technol 99:1–11

    Google Scholar 

  18. Wen W, Cui Zheng Y, Fu-Chun S, Jiang JY (2018) Random caching based cooperative transmission in heterogeneous wireless networks. IEEE Trans Commun 66:2809–2825

    Article  Google Scholar 

  19. Tanbourgi R, Singh S, Andrews JG, Jondral FK (2014) A tractable model for noncoherent joint-transmission base station cooperation. IEEE Trans Wirel Commun 13:4959– 4973

    Article  Google Scholar 

  20. Nigam G, Minero P, Haenggi M (2014) Coordinated multipoint joint transmission in heterogeneous networks. IEEE Trans Commun 62:4134–4146

    Article  Google Scholar 

  21. Baccelli F, Giovanidis A (2015) A stochastic geometry framework for analyzing pairwise-cooperative cellular networks. IEEE Trans Wirel Commun 14:794–808

    Article  Google Scholar 

  22. Nigam G (2014) Coordinated multipoint joint transmission in heterogeneous networks. IEEE Trans Commun 62:4134–4146

    Article  Google Scholar 

  23. Li K (2018) Optimization and analysis of probabilistic caching in N-tier heterogeneous networks. IEEE Trans Wirel Commun 17:1283–1297

    Article  Google Scholar 

  24. Choi M (2018) Wireless video caching and dynamic streaming under differentiated quality requirements. IEEE J Sel Areas Commun 36:1245–1257

    Article  Google Scholar 

  25. Nie W (2016) Hetnets with random DTX scheme: Local delay and energy efficiency. IEEE Trans Veh Technol 65:6601–6613

    Article  Google Scholar 

  26. Chae SH, Ryu JY, Quek TQS, Choi W (2015) Cooperative transmission via caching helpers, IEEE Global Communications Conference (GLOBECOM), 1–6

  27. Wen W, Cui Y, Zheng FC et al (2017) . Random Caching Based Cooperative Transmission in Heterogeneous Wireless Networks 66:2809–2825

    Google Scholar 

  28. Schwarz H (2007) Overview of the scalable video coding extension of the h.264/AVC standard. IEEE Trans Circuits Syst Video Technol 17:11036–1120

    Article  Google Scholar 

  29. Wu L (2016) Caching-based scalable video transmission over cellular network. IEEE Commun Lett 20:1156–1159

    Article  Google Scholar 

  30. Zhang X (2019) Economical caching for scalable videos in Cache-Enabled heterogeneous networks. EEE J Sel Areas Commun 37:1608–1621

    Article  Google Scholar 

  31. Zhang X (2018) Energy-Efficient Caching for scalable videos in heterogeneous networks. IEEE J Sel Areas Commun 36:1802–1815

    Article  Google Scholar 

  32. Nigam G, Minero P, Haenggi M (2014) Coordinated multipoint joint transmission in heterogeneous networks. IEEE Trans Commun 62:4134–4146

    Article  Google Scholar 

  33. Baccelli F, Blaszczyszyn B (2009) Stochastic geometry and wireless networks. Volume I - Theory, Foundations and Trends in Networking 3:249–449

    Article  Google Scholar 

  34. Haenggi M (2013) The local delay in Poisson networks. IEEE Trans Inf Theory 59:1788–1802

    Article  MathSciNet  Google Scholar 

  35. Cui Q, Yu X, Wang Y (2018) The SIR meta distribution in poisson cellular networks with base station cooperation. IEEE Trans Commun 66:1234–1249

    Article  Google Scholar 

  36. Haenggi M (2016) The meta distribution of the SIR in Poisson bipolar and cellular networks. IEEE Trans Wirel Commun 15:2577–2589

    Article  Google Scholar 

  37. Salehi M, Mohammadi A, Haenggi M (2017) Analysis of D2D underlaid cellular networks: SIR meta distribution and mean local delay. IEEE Trans Commun 65:2904–2916

    Article  Google Scholar 

  38. Jiang Y, Wan C, Tao M (2020) Analysis and optimization of fog radio access networks with hybrid caching: delay and energy efficiency. IEEE Trans Wirel Commun 99:1–14

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under grants 61901078, 61771082 and 61871062, and in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under grants KJQN201900609 and KJQN202000626, and in part by the Natural Science Foundation of Chongqing under grant cstc2020jcyj-zdxmX0024, and in part by University Innovation Research Group of Chongqing under grant CXQT20017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidu Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Special Issue on Convergence of Edge Computing and Next Generation Networking Guest Editors: Deze Zeng, Geyong Min, Qiang He, and Song Guo

Appendices

Appendix A: Proof of Theorem 1

When cache is missed, the video is transmitted to user by the remote server through the return link and a SBS closest to the user. Let m denote the SBS closest to the typical user. Assuming t is the transmitted video symbol from SBS, the received signal y1 can be written as

$$ {y_{1}} = \sqrt P \cdot {h_{m}} \cdot r_{m}^{- \alpha /2} \cdot t + \sum\limits_{{b_{i}} \in {\Phi} \backslash \left\{ m \right\}} {\sqrt P } \cdot {h_{i}} \cdot r_{i}^{- \alpha /2} \cdot t $$
(33)

where hm and hi are the channel gain from the SBS closest to user and all SBSs from Φ∖{m} respectively, rm and ri are the distance from the SBS closest to user and all SBSs from Φ∖{m}, respectively, so the SIR of typical user can be written as

$$ SIR = \frac{{P \cdot {{\left| {{h_{m}}} \right|}^{2}} \cdot r_{m}^{- \alpha }}}{{\sum\limits_{{b_{i}} \in {\Phi} \backslash \left\{ m \right\}} P \cdot {{\left| {{h_{i}}} \right|}^{2}} \cdot r_{i}^{- \alpha }}} = \frac{{{X_{1}}}}{{{I_{1}}}} $$
(34)

According to the definition of STP, let \(\theta _{n,l}^{z,nocache} = {2^{B{R_{n,l}}/\left ({1 - {\rho _{bh}}} \right )W}} - 1,z \in \{ GU,WU\} \), we have

$$ \begin{array}{@{}rcl@{}} STP_{n,l}^{z,nocache} = {\int}_{0}^{\infty} {{f_{r}}\left( x \right) \cdot } \mathbb{P}\left\{ {SIR > \theta_{n,l}^{z,nocache}|{r_{m}} = x} \right\} \\dx,z \in \left\{ {GU,WU} \right\} \end{array} $$
(35)

where \(\mathbb {P}\left \{ {SIR > \theta _{n,l}^{z,nocache}|{r_{m}} = x} \right \}\) is the STP under rm = x, \({f_{r}}\left (x \right )\) is the probability density function (PDF) of the distance rm.

$$ \begin{array}{@{}rcl@{}} &&\mathbb{P}\left\{ {SIR > \theta_{n,l}^{z,nocache}|{r_{m}} = x} \right\} \hfill \\ &&= \mathbb{P}\left\{ {\frac{{P \cdot {{\left| {{h_{m}}} \right|}^{2}} \cdot r_{m}^{- \alpha }}}{{{I_{1}}}} > \theta_{n,l}^{z,nocache}|{r_{m}} = x} \right\} \hfill \\ &&= \mathbb{P}\left\{ {{{\left| {{h_{m}}} \right|}^{2}} > \theta_{n,l}^{z,nocache} \cdot {I_{1}} \cdot {P^{- 1}} \cdot {x^{\alpha} }|{r_{m}} = x} \right\} \hfill \\ &&\mathop {\text{ = }}\limits^{(a)} {\mathbb{E}_{{I_{1}}}}\left[ {\exp \left( { - \theta_{n,l}^{z,nocache} \cdot {I_{1}} \cdot {P^{- 1}} \cdot {x^{\alpha} }} \right)} \right] \hfill \\ &&{\text{ = }}{\mathcal{L}_{{I_{1}}}}\left( {\theta_{n,l}^{z,nocache} \cdot {P^{- 1}} \cdot {x^{\alpha} }} \right) \hfill \end{array} $$
(36)

where step (a) holds since \({\left | {{h_{m}}} \right |^{2}}\) obeys the exponential distribution with parameter 1, \({{\mathscr{L}}_{{I_{1}}}}\left ({\zeta _{n,l}^{z,nocache}} \right )\) is the Laplace transform of the interference generated by the HPPP-distribution SBSs that are farther than that in Φ∖{m}, which is calculated as

$$ \begin{array}{@{}rcl@{}} &&\!\!\!\!\!{\mathcal{L}_{{I_{1}}}}\left( {\zeta_{n,l}^{z,nocache}} \right) = {\mathbb{E}_{{I_{1}}}}\left[ {\exp \left( { \!- \sum\limits_{{b_{i}} \in {\Phi} \backslash \left\{ m \right\}} {\zeta_{n,l}^{z,nocache} \cdot P} \cdot {{\left| {{h_{i}}} \right|}^{2}} \cdot x_{i}^{- \alpha }} \right)} \right] \hfill \\ &&\!\!\!\!\!= {\mathbb{E}_{\Phi ,{{\left| {{h_{i}}} \right|}^{2}}}}\left[ {\underset{{b_{i}} \in {\Phi} \backslash \left\{ m \right\}}{\prod} {\exp \left( { - \zeta_{n,l}^{z,nocache} \cdot P \cdot {{\left| {{h_{i}}} \right|}^{2}} \cdot x_{i}^{- \alpha }} \right)} } \right] \hfill \\ &&\!\!\!\!\!= {\mathbb{E}_{\Phi} }\left[ {\underset{{b_{i}} \in {\Phi} \backslash \left\{ m \right\}}{\prod} {{\mathbb{E}_{{{\left| {{h_{i}}} \right|}^{2}}}}\left[ {\exp \left( { - \zeta_{n,l}^{z,nocache} \cdot P \cdot {{\left| {{h_{i}}} \right|}^{2}} \cdot x_{i}^{- \alpha }} \right)} \right]} } \right] \hfill \\ &&\!\!\!\!\!\mathop = \limits^{(b)} {\mathbb{E}_{\Phi} }\left[ {\underset{{b_{i}} \in {\Phi} \backslash \left\{ m \right\}}{\prod} {\frac{1}{{1 + \zeta_{n,l}^{z,nocache} \cdot P \cdot x_{i}^{- \alpha }}}} } \right] \hfill \\ &&\!\!\!\!\!\mathop = \limits^{(c)} \exp \left( { - 2\pi \cdot \lambda \int\limits_{x}^{\infty} {\frac{{\zeta_{n,l}^{z,nocache} \cdot P \cdot {\psi^{- \alpha }}}}{{1 + \zeta_{n,l}^{z,nocache} \cdot P \cdot {\psi^{- \alpha }}}}\psi d\psi } } \right) \hfill \\ &&\!\!\!\!\!= \exp \left( { - \pi \cdot \lambda \cdot {x^{2}}\left( {{~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }; - \theta_{n,l}^{z,nocache}} \right) - 1} \right)} \right) \hfill \end{array} $$
(37)

where step (b) can be obtained from that \({\left | {{h_{i,j}}} \right |^{2}}\) obeys the exponential distribution with parameter 1, and step (c) holds due to the probability generating functional (PGFL) of HPPP. The PDF of the distance rm is

$$ {f_{{r_{m}}}}(x) = 2\pi \lambda x \cdot \exp \left( { - \pi \lambda {x^{2}}} \right) $$
(38)

Combining Eqs. 3637 and 38 to Eq. 35, we obtain Theorem 1.

Appendix B: proof of Theorem 2

When cache is missed, the SIR of WU is shown as follows

$$ SIR = \frac{{{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {\sqrt P } \cdot {h_{i}} \cdot {\chi^{- \alpha /2}}} \right|}^{2}}}}{{\sum\limits_{{b_{j}} \in {{\Phi}_{3}}\backslash {{\Phi}_{K}}} {P \cdot {h_{j}} \cdot {\chi^{- \alpha /2}}} + \sum\limits_{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}} P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }}} = \frac{{{X_{2}}}}{{{I_{2}}}} $$
(39)

where Φ3 is the set consist of three SBSs closest to WU. Let \(\theta _{n,l}^{WU,nocache}\) denote the threshold of SIR of worst-case users, there holds

$$ STP_{n,l}^{WU,nocache} = {\int}_{0}^{\infty} {{f_{\chi} }\left( x \right) \cdot \mathbb{P}\left\{ {SIR > \theta_{n,l}^{WU,nocache}|\chi = x} \right\}} $$
(40)

where \(\mathbb {P}\left \{ {SIR > \theta _{n,l}^{WU,nocache}|\chi = x} \right \}\) is the STP under χ = x,

$$ \begin{array}{@{}rcl@{}} &&\mathbb{P}\left\{ {SIR > \theta_{n,l}^{WU,nocache}|\chi = x} \right\} \hfill \\ &&= \mathbb{P}\left\{ {\frac{{{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {\sqrt P } \cdot {h_{i}} \cdot r_{i}^{- \alpha /2}} \right|}^{2}}}}{{{I_{2}}}} > \theta_{n,l}^{WU,nocache}|\chi = x} \right\} \hfill \\ &&= \mathbb{P}\left\{ {{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {{h_{i}} \cdot r_{i}^{- \alpha /2}} } \right|}^{2}} > \theta_{n,l}^{WU,nocache} \cdot {I_{2}} \cdot {P^{- 1}}|\chi = x} \right\} \hfill \\ &&= {\mathbb{E}_{{I_{2}}}}\left[ {\exp \left( { - \theta_{n,l}^{WU,nocache} \cdot {I_{2}} \cdot {P^{- 1}}/{{\text{x}}^{- \alpha }}} \right)} \right] \hfill \\ &&{\text{ = }}{\mathcal{L}_{{I_{2}}}}\left( {\theta_{n,l}^{WU,nocache} \cdot {P^{- 1}}/{{\text{x}}^{- \alpha }}} \right) \hfill \end{array} $$
(41)

where \({{\mathscr{L}}_{{I_{2}}}}\left ({\zeta _{n,l}^{WU,nocache}} \right )\) is the Laplace transform of the interference generated by the HPPP-distribution SBSs that are farther than that in Φ∖ΦK, which is calculated as

$$ \begin{array}{@{}rcl@{}} &&{\mathcal{L}_{{I_{2}}}}\left( {\zeta_{n,l}^{WU,nocache}} \right) = {\mathbb{E}_{{I_{3}}}}\left[ {\exp \left( { - \zeta_{n,l}^{WU,nocache} \cdot \left( {\sum\limits_{{b_{j}} \in {{\Phi}_{3}}\backslash {{\Phi}_{K}}} {P \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot {\chi^{- \alpha }}} + \sum\limits_{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}} {P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }} } \right)} \right)} \right] \hfill \\ &&= {\mathbb{E}_{{{\Phi}_{K}},{{\left| {{h_{i}}} \right|}^{2}}}}\left[ {\underset{{b_{j}} \in {{\Phi}_{3}}\backslash {{\Phi}_{K}}}{\prod} {\exp \left( { - \zeta_{n,l}^{WU,nocache} \cdot P \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot {\chi^{- \alpha }}} \right)} \cdot \underset{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}}{\prod} {\exp \left( { - \zeta_{n,l}^{WU,nocache} \cdot P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }} \right)} } \right] \hfill \\ &&= {\left( {\frac{1}{{1 + \theta_{n,l}^{WU,nocache}}}} \right)^{2}} \cdot {\mathbb{E}_{{{\Phi}_{K}},{{\left| {{h_{i}}} \right|}^{2}}}}\left[ {\underset{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}}{\prod} {\exp \left( { - \zeta_{n,l}^{WU,nocache} \cdot P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }} \right)} } \right] \hfill \\ &&= {\left( {\frac{1}{{1 + \theta_{n,l}^{WU,nocache}}}} \right)^{2}} \cdot \exp \left( { - \pi \cdot \lambda \cdot {\chi^{2}}\left( {{~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }; - \theta_{n,l}^{WU,nocache}} \right) - 1} \right)} \right) \hfill \end{array} $$
(42)

The joint pdf of the link distances is

$$ {f_{\chi} }\left( x \right) = 2{\pi^{2}}{\lambda^{2}}{x^{3}}\exp (- \lambda \pi {x^{2}}) $$
(43)

Combining Eqs. 4142 and 43 to Eq. 40, we obtain Theorem 2.

Appendix C: proof of Theorem 3

Similarly, when cache is hit, the SIR of GU is expressed as

$$ SIR = \frac{{{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {\sqrt P } \cdot {h_{i}} \cdot r_{i}^{- \alpha /2}} \right|}^{2}}}}{{\sum\limits_{{b_{j}} \in {\Phi} \backslash {{\Phi}_{K}}} P \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot r_{j}^{- \alpha }}} = \frac{{{X_{3}}}}{{{I_{3}}}} $$
(44)

Let \(\theta _{n,l}^{GU,sch}\) denote the threshold of SIR of general users, we discuss the STP in two cases.

  1. Case 1:

    when K = 1, we have the following conclusion according to Appendix A

    $$ \begin{array}{@{}rcl@{}} STP_{n,l}^{GU,sch} = 1/{~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }; - \theta_{n,l}^{GU,sch}} \right), \\ sch \in \left\{ {CSVC,CV,CMQL} \right\} \\ \end{array} $$
    (45)
  2. Case 2:

    when \(K \geqslant 2\), there holds

    $$ \begin{array}{@{}rcl@{}} STP_{n,l}^{GU,sch} &=& {\int}_{0}^{{x_{2}}} {{\int}_{{x_{1}}}^{{x_{3}}} { \cdot \cdot \cdot } } {\int}_{{x_{K - 1}}}^{\infty} {f_{\boldsymbol{r}}}\left( \boldsymbol{x} \right) \cdot \mathbb{P}\left\{ {SIR > \theta_{n,l}^{GU,sch}|r = x} \right\} \\&&d{x_{1}}d{x_{2}} \cdot \cdot \cdot d{x_{K}} \end{array} $$
    (46)

    where \(\mathbb {P}\left \{ {SIR > \theta _{n,l}^{GU,sch}|\boldsymbol {r = x}} \right \}\) is the STP under r = x,

    $$ \begin{array}{@{}rcl@{}} &&\mathbb{P}\left\{ {SIR > \theta_{n,l}^{GU,sch}|r = x} \right\} \hfill \\ &&= \mathbb{P}\left\{ {\frac{{{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {\sqrt P } \cdot {h_{i}} \cdot r_{i}^{- \alpha /2}} \right|}^{2}}}}{{{I_{3}}}} > \theta_{n,l}^{GU,sch}|r = x} \right\} \hfill \\ &&= \mathbb{P}\!\left\{ \!{{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {{h_{i}} \cdot r_{i}^{- \alpha /2}} } \right|}^{2}} \!\!>\! \theta_{n,l}^{GU,sch} \cdot {I_{3}} \cdot {P^{- 1}}|r = x} \right\} \hfill \\ &&\mathop {\text{ = }}\limits^{(d)} {\mathbb{E}_{{I_{2}}}}\left[ {\exp \left( { - \theta_{n,l}^{GU,sch} \cdot {I_{3}} \cdot {P^{ - 1}}/\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {x_{i}^{- \alpha }} } \right)} \right] \hfill \\ &&{\text{ = }}{\mathcal{L}_{{I_{2}}}}\left( {\theta_{n,l}^{GU,sch} \cdot {P^{- 1}}/\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {x_{i}^{ - \alpha }} } \right) \hfill \end{array} $$
    (47)

    where step (d) holds since \({\left | {\sum \limits _{{b_{i}} \in {{\Phi }_{K}}} {{h_{i}} \cdot x_{i}^{- \alpha /2}} } \right |^{2}}\) obeys the exponential distribution with parameter \(1/\sum \limits _{{b_{i}} \in {{\Phi }_{K}}} {x_{i}^{- \alpha }}\), \({{\mathcal L}_{{I_{3}}}}\left ({\zeta _{n,l}^{GU,sch}} \right )\) is the Laplace transform of the interference generated by the HPPP-distribution SBSs that are farther than that in Φ∖ΦK, which is calculated as

    $$ \begin{array}{@{}rcl@{}} &&{\mathcal{L}_{{I_{3}}}}\left( {\zeta_{n,l}^{GU,sch}} \right) = {\mathbb{E}_{{I_{3}}}}\left[ {\exp \left( { - \sum\limits_{{b_{j}} \in {\Phi} \backslash {{\Phi}_{K}}} {\zeta_{n,l}^{GU,sch} \cdot P} \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot x_{j}^{- \alpha }} \!\right)} \!\!\right] \hfill \\ &&= {\mathbb{E}_{{{\Phi}_{K}},{{\left| {{h_{i}}} \right|}^{2}}}}\left[ {\underset{{b_{j}} \in {\Phi} \backslash {{\Phi}_{K}}}{\prod} {\exp \left( { - \zeta_{n,l}^{GU,sch} \cdot P \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot x_{j}^{- \alpha }} \right)} } \right] \hfill \\ &&= {\mathbb{E}_{{{\Phi}_{K}}}}\left[ {\underset{{b_{j}} \in {\Phi} \backslash {{\Phi}_{K}}}{\prod} {{\mathbb{E}_{{{\left| {{h_{j}}} \right|}^{2}}}}\left[ {\exp \left( { - \zeta_{n,l}^{GU,sch} \cdot P \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot x_{j}^{- \alpha }} \right)} \right]} } \right] \hfill \\ &&= {\mathbb{E}_{{{\Phi}_{K}}}}\left[ {\underset{{b_{i}} \in {\Phi} \backslash {{\Phi}_{K}}}{\prod} {\frac{1}{{1 + \zeta_{n,l}^{GU,sch} \cdot P \cdot x_{j}^{- \alpha }}}} } \right] \hfill \\ &&= \exp \left( { - 2\pi \cdot \lambda \int\limits_{{x_{K}}}^{\infty} {\frac{{\zeta_{n,l}^{GU,sch} \cdot P \cdot {\psi^{- \alpha }}}}{{1 + \zeta_{n,l}^{GU,sch} \cdot P \cdot {\psi^{- \alpha }}}}\psi d\psi } } \right) \hfill \\ &&= \exp \left( { \!- \pi \cdot \lambda\! \cdot {x_{K}^{2}}\!\left( \! {{~}_{2}{F_{1}}\!\left( \! { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }, - \frac{{\theta_{n,l}^{GU,sch}}}{{\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {{{\left( {\frac{{{x_{i}}}}{{{x_{K}}}}} \right)}^{- \alpha }}} }}} \!\right) - 1\!} \right)} \!\right) \hfill\!\!\! \\ \end{array} $$
    (48)

The PDF of the distance from K SBSs nearest to typical users is

$$ {f_{\boldsymbol{r}}}\left( \boldsymbol{x} \right) = {\left( {2\pi \lambda } \right)^{K}}\exp \left( { - \pi \lambda {x_{K}^{2}}} \right){\prod}_{k = 1}^{K} {{x_{k}}} $$
(49)

Obviously, when \(K \geqslant 2\), the calculation of the successful transmission probability involves multidimensional integral, which is difficult to calculate. Especially when K is large, according to [38], the nearest SBS to the typical user can be regarded as a uniform distribution in the circle with the typical user as the center and the radius rK. Therefore, joint distribution functions of the nearest K SBSs to typical users can be approximately written

$$ {f_{\boldsymbol{r}}}\left( \boldsymbol{x} \right) \approx \frac{{2{{\left( {\pi \lambda } \right)}^{K}}}}{{\left( {K - 1} \right)!}} \cdot x_{K}^{2K - 1} \cdot \exp \left( { - \pi \lambda {x_{K}^{2}}} \right){\prod}_{k = 1}^{K - 1} {\frac{{2{x_{k}}}}{{{x_{K}^{2}}}}} $$
(50)

Combining Eqs. 4849 and 50 to Eq. 46, we obtain Theorem 3.

Appendix D: Proof of Theorem 4

Similarly, when cache is hit, the SIR of WU is expressed as

$$ SIR = \frac{{{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {\sqrt P } \cdot {h_{i}} \cdot {\chi^{- \alpha /2}}} \right|}^{2}}}}{{\sum\limits_{{b_{j}} \in {{\Phi}_{3}}\backslash {{\Phi}_{K}}} {P \cdot {h_{j}} \cdot {\chi^{- \alpha /2}}} + \sum\limits_{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}} P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }}} = \frac{{{X_{4}}}}{{{I_{4}}}} $$
(51)

Let \(\theta _{n,l}^{WU,sch}\) denote the threshold of SIR of worst-case users, the STP of WU is showed as follows

$$ STP_{n,l}^{WU,sch} = {\int}_{0}^{\infty} {{f_{\chi} }\left( x \right) \cdot } \mathbb{P}\left\{ {SIR > \theta_{n,l}^{WU,sch}|\chi = x} \right\}dx $$
(52)

where \(\mathbb {P}\left \{ {SIR > \theta _{n,l}^{WU,sch}|\chi = x} \right \}\) is the STP under χ = x,

$$ \begin{array}{@{}rcl@{}} &&\mathbb{P}\left\{ {SIR > \theta_{n,l}^{WU,sch}|\chi = x} \right\} \hfill \\ &&= \mathbb{P}\left\{ {\frac{{{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {\sqrt P } \cdot {h_{i}} \cdot r_{i}^{- \alpha /2}} \right|}^{2}}}}{{{I_{4}}}} > \theta_{n,l}^{WU,sch}|\chi = x} \right\} \hfill \\ &&= \mathbb{P}\left\{ {{{\left| {\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {{h_{i}} \cdot r_{i}^{- \alpha /2}} } \right|}^{2}} > \theta_{n,l}^{WU,sch} \cdot {I_{4}} \cdot {P^{- 1}}|\chi = x} \right\} \hfill \\ &&= {\mathbb{E}_{{I_{4}}}}\left[ {\exp \left( { - \theta_{n,l}^{WU,sch} \cdot {I_{4}} \cdot {P^{- 1}}/K \cdot {{\text{x}}^{- \alpha }}} \right)} \right] \hfill \\ &&{\text{ = }}{\mathcal{L}_{{I_{4}}}}\left( {\theta_{n,l}^{WU,sch} \cdot {P^{- 1}}/K \cdot {{\text{x}}^{- \alpha }}} \right) \hfill \end{array} $$
(53)

where \({{\mathscr{L}}_{{I_{4}}}}\left ({\zeta _{n,l}^{WU,sch}} \right )\) is the Laplace transform of the interference generated by the HPPP-distribution SBSs that are farther than that in Φ∖ΦK, which is calculated as

$$ \begin{array}{@{}rcl@{}} &&{\mathcal{L}_{{I_{4}}}}\left( {\zeta_{n,l}^{WU,sch}} \right) = {\mathbb{E}_{{I_{4}}}}\left[ {\exp \left( { - \zeta_{n,l}^{WU,sch} \cdot \left( {\sum\limits_{{b_{j}} \in {{\Phi}_{3}}\backslash {{\Phi}_{K}}} {P \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot {\chi^{- \alpha }}} + \sum\limits_{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}} {P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }} } \right)} \right)} \right] \hfill \\ &&= {\mathbb{E}_{{{\Phi}_{K}},{{\left| {{h_{i}}} \right|}^{2}}}}\left[ {\underset{{b_{j}} \in {{\Phi}_{3}}\backslash {{\Phi}_{K}}}{\prod} {\exp \left( { - \zeta_{n,l}^{WU,sch} \cdot P \cdot {{\left| {{h_{j}}} \right|}^{2}} \cdot {\chi^{- \alpha }}} \right)} \cdot \underset{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}}{\prod} {\exp \left( { - \zeta_{n,l}^{WU,sch} \cdot P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }} \right)} } \right] \hfill \\ &&= {\left( {1 + \frac{{\theta_{n,l}^{WU,sch}}}{K}} \right)^{K - 3}} \cdot {\mathbb{E}_{{{\Phi}_{K}},{{\left| {{h_{i}}} \right|}^{2}}}}\left[ {\underset{{b_{u}} \in {\Phi} \backslash {{\Phi}_{3}}}{\prod} {\exp \left( { - \zeta_{n,l}^{WU,sch} \cdot P \cdot {{\left| {{h_{u}}} \right|}^{2}} \cdot r_{u}^{- \alpha }} \right)} } \right] \hfill \\ &&= {\left( {1 + \frac{{\theta_{n,l}^{WU,sch}}}{K}} \right)^{K - 3}} \cdot \exp \left( { - \pi \cdot \lambda \cdot {\chi^{2}}\left( {{~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }; - \frac{{\theta_{n,l}^{WU,sch}}}{K}} \right) - 1} \right)} \right) \hfill \end{array} $$
(54)

The joint PDF of the link distances is

$$ {f_{\chi} }\left( x \right) = 2{\pi^{2}}{\lambda^{2}}{x^{3}}\exp (- \lambda \pi {x^{2}}) $$
(55)

Combining Eqs. 5354 and 55 to Eq. 52, we obtain Theorem 4.

Appendix E: Proof of Theorem 5

The number of video retransmissions is defined as the expectation of the reciprocal of successful transmission probability, i.e.

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left\{ {1/STP_{n,l,K}^{GU,sch}} \right\} = \mathbb{E}\left\{ {\mathcal{L}{{\left( {\zeta_{n,l}^{GU,sch}} \right)}^{- 1}}} \right\} \hfill \\ &&= {\int}_{0}^{{x_{2}}} {{\int}_{{x_{1}}}^{{x_{3}}} { \cdot \cdot \cdot } } {\int}_{{x_{K - 1}}}^{\infty} {{f_{\boldsymbol{r}}}\left( \boldsymbol{x} \right) \cdot } \mathcal{L}{\left( {\zeta_{n,l}^{GU,sch}} \right)^{- 1}}d{x_{1}}d{x_{2}} \cdot \cdot \cdot d{x_{K}} \hfill \\ &&= {\int}_{0}^{{x_{2}}} {{\int}_{{x_{1}}}^{{x_{3}}} { \cdot \cdot \cdot } } {\int}_{{x_{K - 1}}}^{\infty} {{f_{\boldsymbol{r}}}\left( \boldsymbol{x} \right) \cdot } \exp \left( {\pi \cdot \lambda \cdot {x_{K}^{2}}\left( {{~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }, - \frac{{\zeta_{n,l}^{GU,sch} \cdot P}}{{x_{K}^{\alpha} }}} \right) - 1} \right)} \right)d{x_{1}}d{x_{2}} \cdot \cdot \cdot d{x_{K}} \hfill \\ &&\approx {{\int}_{0}^{1}} {{{\int}_{0}^{1}} { \cdot \cdot \cdot } } {\int}_{0}^{\infty} {{f_{\boldsymbol{r}}}\left( \boldsymbol{x} \right) \cdot } \exp \left( {\pi \cdot \lambda \cdot {x_{K}^{2}}\left( {{~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }, - \frac{{\zeta_{n,l}^{GU,sch} \cdot P}}{{x_{K}^{\alpha} }}} \right) - 1} \right)} \right)d{x_{1}}d{x_{2}} \cdot \cdot \cdot d{x_{K}} \hfill \\ &&= {{\int}_{0}^{1}} { \cdot \cdot \cdot {{\int}_{0}^{1}} {{{\left( {{\text{2}} - {~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }, - \frac{{\theta_{n,l}^{GU,sch} \cdot P}}{{\sum\limits_{{b_{i}} \in {{\Phi}_{K}}} {v_{i}^{- \alpha }} }}} \right)} \right)}^{- 1}}d{v_{1}} \cdot \cdot \cdot d{v_{K - 1}}} } \hfill \end{array} $$
(56)
$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left\{ {1/STP_{n,l,K}^{WU,sch}} \right\} = \mathbb{E}\left\{ {\mathcal{L}{{\left( {\zeta_{n,l}^{WU,sch}} \right)}^{- 1}}} \right\} \hfill \\ &&= {\int}_{0}^{\infty} {{f_{\chi} }\left( x \right) \cdot } \mathcal{L}{\left( {\zeta_{n,l}^{WU,sch}} \right)^{- 1}}dx \hfill \\ &&= {\int}_{0}^{\infty} {{f_{\chi} }\left( x \right) \cdot {{\left( {1 + \frac{{\theta_{n,l}^{WU,sch}}}{K}} \right)}^{3 - K}} \cdot \exp \left( {\pi \cdot \lambda \cdot {x^{2}}\left( {{~}_{2}{F_{1}}\left( { - \frac{2}{\alpha },1;1 - \frac{2}{\alpha }; - \frac{{\theta_{n,l}^{WU,sch}}}{K}} \right) - 1} \right)} \right)dx} \hfill \\ &&= {\left( {1 + \frac{{\theta_{n,l}^{WU,sch}}}{K}} \right)^{3 - K}}/{\left( {1 - \frac{{\theta_{n,l}^{WU,sch}}}{K}} \right)^{2}} \hfill \end{array} $$
(57)

Theorem 5 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Xu, H., Li, Z. et al. Video placement and delivery in edge caching networks: Analytical model and optimization scheme. Peer-to-Peer Netw. Appl. 14, 3998–4013 (2021). https://doi.org/10.1007/s12083-021-01131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-021-01131-4

Keywords

Navigation