Semin Respir Crit Care Med 2021; 42(03): 436-448
DOI: 10.1055/s-0041-1728797
Review Article

The Impact of Resistant Bacterial Pathogens including Pseudomonas aeruginosa and Burkholderia on Lung Transplant Outcomes

Alicia B. Mitchell
1   Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
,
Allan R. Glanville
2   Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia
› Author Affiliations
Funding None.

Abstract

Pseudomonas and Burkholderia are gram-negative organisms that achieve colonization within the lungs of patients with cystic fibrosis, and are associated with accelerated pulmonary function decline. Multidrug resistance is a hallmark of these organisms, which makes eradication efforts difficult. Furthermore, the literature has outlined increased morbidity and mortality for lung transplant (LTx) recipients infected with these bacterial genera. Indeed, many treatment centers have considered Burkholderia cepacia infection an absolute contraindication to LTx. Ongoing research has delineated different species within the B. cepacia complex (BCC), with significantly varied morbidity and survival profiles. This review considers the current evidence for LTx outcomes between the different subspecies encompassed within these genera as well as prophylactic and management options. The availability of meta-genomic tools will make differentiation between species within these groups easier in the future, and will allow more evidence-based decisions to be made regarding suitability of candidates colonized with these resistant bacteria for LTx. This review suggests that based on the current evidence, not all species of BCC should be considered contraindications to LTx, going forward.



Publication History

Article published online:
24 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Winstead RJ, Waldman G, Autry EB. et al. Outcomes of lung transplantation for cystic fibrosis in the setting of extensively drug-resistant organisms. Prog Transplant 2019; 29 (03) 220-224
  • 2 van Delden C, Stampf S, Hirsch HH. et al; Swiss Transplant Cohort Study. Burden and timeline of infectious diseases in the first year after solid organ transplantation in the Swiss transplant cohort study. Clin Infect Dis 2020; 71 (07) e159-e169
  • 3 Glanville AR, Verleden GM, Todd JL. et al. Chronic lung allograft dysfunction: definition and update of restrictive allograft syndrome—a consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 2019; 38 (05) 483-492
  • 4 Verleden GM, Glanville AR, Lease ED. et al. Chronic lung allograft dysfunction: definition, diagnostic criteria, and approaches to treatment—a consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 2019; 38 (05) 493-503
  • 5 Yeung JC, Machuca TN, Chaparro C. et al. Lung transplantation for cystic fibrosis. J Heart Lung Transplant 2020; 39 (06) 553-560
  • 6 Smith SR, Foweraker J, Hamilton D, White J, McNeil K. Impact of antibiotic-resistant pseudomonas on the survival of cystic fibrosis (CF) patients following heart-lung transplantation. J Heart Lung Transplant 2001; 20 (02) 224
  • 7 Snell GI, de Hoyos A, Krajden M, Winton T, Maurer JR. Pseudomonas cepacia in lung transplant recipients with cystic fibrosis. Chest 1993; 103 (02) 466-471
  • 8 Aguado JM, Silva JT, Fernández-Ruiz M. et al; Spanish Society of Transplantation (SET), Group for Study of Infection in Transplantation of the Spanish Society of Infectious Diseases and Clinical Microbiology (GESITRA-SEIMC), Spanish Network for Research in Infectious Diseases (REIPI) (RD16/0016). Management of multidrug resistant gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev (Orlando) 2018; 32 (01) 36-57
  • 9 Webb AK, Egan J. Should patients with cystic fibrosis infected with Burkholderia cepacia undergo lung transplantation?. Thorax 1997; 52 (08) 671-673
  • 10 LiPuma JJ. Burkholderia cepacia complex: a contraindication to lung transplantation in cystic fibrosis?. Transpl Infect Dis 2001; 3 (03) 149-160
  • 11 Olland A, Falcoz PE, Kessler R, Massard G. Should cystic fibrosis patients infected with Burkholderia cepacia complex be listed for lung transplantation?. Interact Cardiovasc Thorac Surg 2011; 13 (06) 631-634
  • 12 de Souza Carraro D, Carraro RM, Campos SV. et al. Burkholderia cepacia, cystic fibrosis and outcomes following lung transplantation: experiences from a single center in Brazil. Clinics (São Paulo) 2018; 73: e166
  • 13 Maurer JR, Frost AE, Estenne M, Higenbottam T, Glanville AR. International guidelines for the selection of lung transplant candidates. The International Society for Heart and Lung Transplantation, the American Thoracic Society, the American Society of Transplant Physicians, the European Respiratory Society. J Heart Lung Transplant 1998; 17 (07) 703-709
  • 14 Orens JB, Estenne M, Arcasoy S. et al; Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. International guidelines for the selection of lung transplant candidates: 2006 update--a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2006; 25 (07) 745-755
  • 15 Weill D, Benden C, Corris PA. et al. A consensus document for the selection of lung transplant candidates: 2014--an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2015; 34 (01) 1-15
  • 16 Nash EF, Coonar A, Kremer R. et al. Survival of Burkholderia cepacia sepsis following lung transplantation in recipients with cystic fibrosis. Transpl Infect Dis 2010; 12 (06) 551-554
  • 17 Teri A, Sottotetti S, Biffi A. et al. Molecular typing of Burkholderia cepacia complex isolated from patients attending an Italian Cystic Fibrosis Centre. New Microbiol 2018; 41 (02) 141-144
  • 18 Aris RM, Routh JC, LiPuma JJ, Heath DG, Gilligan PH. Lung transplantation for cystic fibrosis patients with Burkholderia cepacia complex. Survival linked to genomovar type. Am J Respir Crit Care Med 2001; 164 (11) 2102-2106
  • 19 De Soyza A, Meachery G, Hester KL. et al. Lung transplantation for patients with cystic fibrosis and Burkholderia cepacia complex infection: a single-center experience. J Heart Lung Transplant 2010; 29 (12) 1395-1404
  • 20 De Soyza A, Morris K, McDowell A. et al. Prevalence and clonality of Burkholderia cepacia complex genomovars in UK patients with cystic fibrosis referred for lung transplantation. Thorax 2004; 59 (06) 526-528
  • 21 De Soyza A, Archer L, McDowell A. et al. Lung transplantation for cystic fibrosis; the effect of B cepacia genomovars on post transplant outcomes. J Heart Lung Transplant 2001; 20 (02) 158
  • 22 De Soyza A, McDowell A, Archer L. et al. Burkholderia cepacia complex genomovars and pulmonary transplantation outcomes in patients with cystic fibrosis. Lancet 2001; 358 (9295): 1780-1781
  • 23 Murray S, Charbeneau J, Marshall BC, LiPuma JJ. Impact of Burkholderia infection on lung transplantation in cystic fibrosis. Am J Respir Crit Care Med 2008; 178 (04) 363-371
  • 24 Somayaji R, Yau YCW, Tullis E, LiPuma JJ, Ratjen F, Waters V. Clinical outcomes associated with Burkholderia cepacia complex infection in patients with cystic fibrosis. Ann Am Thorac Soc 2020; 17 (12) 1542-1548
  • 25 Wang R, Welsh SK, Budev M. et al. Survival after lung transplantation of cystic fibrosis patients infected with Burkholderia dolosa (genomovar VI). Clin Transplant 2018; 32 (05) e13236
  • 26 Häussler S, Lehmann C, Breselge C. et al. Fatal outcome of lung transplantation in cystic fibrosis patients due to small-colony variants of the Burkholderia cepacia complex. Eur J Clin Microbiol Infect Dis 2003; 22 (04) 249-253
  • 27 Ieranò T, Silipo A, Sturiale L. et al. The structure and proinflammatory activity of the lipopolysaccharide from Burkholderia multivorans and the differences between clonal strains colonizing pre and posttransplanted lungs. Glycobiology 2008; 18 (11) 871-881
  • 28 Schwab U, Abdullah LH, Perlmutt OS. et al. Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 2014; 82 (11) 4729-4745
  • 29 Carugati M, Piazza A, Peri AM. et al; IFALT Working Group. Fatal respiratory infection due to ST308 VIM-1-producing Pseudomonas aeruginosa in a lung transplant recipient: case report and review of the literature. BMC Infect Dis 2020; 20 (01) 635
  • 30 Camargo CH, Bruder-Nascimento A, Mondelli AL, Montelli AC, Sadatsune T. Detection of SPM and IMP metallo-β-lactamases in clinical specimens of Pseudomonas aeruginosa from a Brazilian public tertiary hospital. Braz J Infect Dis 2011; 15 (05) 478-481
  • 31 Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 2005; 49 (08) 3538-3540
  • 32 Breidenstein EB, de la Fuente-Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19 (08) 419-426
  • 33 Voor In't Holt AF, Severin JA, Lesaffre EM, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2014; 58 (05) 2626-2637
  • 34 Kwint HM, van der Linden PD, Roukens MM, Natsch S. SWAB's Working Group on Surveillance of Antimicrobial Use. Intensification of antibiotic use within acute care hospitals in the Netherlands. J Antimicrob Chemother 2012; 67 (09) 2283-2288
  • 35 Plüss-Suard C, Pannatier A, Kronenberg A, Mühlemann K, Zanetti G. Hospital antibiotic consumption in Switzerland: comparison of a multicultural country with Europe. J Hosp Infect 2011; 79 (02) 166-171
  • 36 Quon BS, Sykes J, Stanojevic S. et al. Clinical characteristics of cystic fibrosis patients prior to lung transplantation: an international comparison between Canada and the United States. Clin Transplant 2018; 32 (03) e13188
  • 37 De Soyza A, Corris PA. Lung transplantation and the Burkholderia cepacia complex. J Heart Lung Transplant 2003; 22 (09) 954-958
  • 38 Salunkhe P, Töpfer T, Buer J, Tümmler B. Genome-wide transcriptional profiling of the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 2005; 187 (08) 2565-2572
  • 39 Scott FW, Pitt TL. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 2004; 53 (Pt 7): 609-615
  • 40 Schwensen HF, Moser C, Perch M, Pressler T, Høiby N. Pseudomonas aeruginosa antibody response in cystic fibrosis decreases rapidly following lung transplantation. J Cyst Fibros 2020; 19 (04) 587-594
  • 41 Dugger DT, Fung M, Zlock L. et al. Cystic fibrosis lung transplant recipients have suppressed airway interferon responses during Pseudomonas infection. Cell Rep Med 2020; 1 (04) 100055
  • 42 Gregson AL, Wang X, Weigt SS. et al. Interaction between Pseudomonas and CXC chemokines increases risk of bronchiolitis obliterans syndrome and death in lung transplantation. Am J Respir Crit Care Med 2013; 187 (05) 518-526
  • 43 Borthwick LA, Sunny SS, Oliphant V. et al. Pseudomonas aeruginosa accentuates epithelial-to-mesenchymal transition in the airway. Eur Respir J 2011; 37 (05) 1237-1247
  • 44 Borthwick LA, Suwara MI, Carnell SC. et al. Pseudomonas aeruginosa induced airway epithelial injury drives fibroblast activation: a mechanism in chronic lung allograft dysfunction. Am J Transplant 2016; 16 (06) 1751-1765
  • 45 Ballard RW, Palleroni NJ, Doudoroff M, Stanier RY, Mandel M. Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli . J Gen Microbiol 1970; 60 (02) 199-214
  • 46 Palleroni NJ, Doudoroff M, Stanier RY, Solánes RE, Mandel M. Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J Gen Microbiol 1970; 60 (02) 215-231
  • 47 Segonds C, Clavel-Batut P, Thouverez M. et al. Microbiological and epidemiological features of clinical respiratory isolates of Burkholderia gladioli . J Clin Microbiol 2009; 47 (05) 1510-1516
  • 48 Khan SU, Arroglia AC, Gordon SM. Significance of airway colonization by Burkholderia gladioli in lung transplant candidates. Chest 1998; 114 (02) 658
  • 49 Kanj SS, Tapson V, Davis RD, Madden J, Browning I. Infections in patients with cystic fibrosis following lung transplantation. Chest 1997; 112 (04) 924-930
  • 50 Ross JP, Holland SM, Gill VJ, DeCarlo ES, Gallin JI. Severe Burkholderia (Pseudomonas) gladioli infection in chronic granulomatous disease: report of two successfully treated cases. Clin Infect Dis 1995; 21 (05) 1291-1293
  • 51 Brizendine KD, Baddley JW, Pappas PG, Leon KJ, Rodriguez JM. Fatal Burkholderia gladioli infection misidentified as Empedobacter brevis in a lung transplant recipient with cystic fibrosis. Transpl Infect Dis 2012; 14 (04) E13-E18
  • 52 Thompson III GR, Wickes BL, Herrera ML, Haman TC, Lewis II JS, Jorgensen JH. Disseminated Burkholderia gladioli infection in a lung transplant recipient with underlying hypocomplementemic urticarial vasculitis. Transpl Infect Dis 2011; 13 (06) 641-645
  • 53 Khan SU, Gordon SM, Stillwell PC, Kirby TJ, Arroliga AC. Empyema and bloodstream infection caused by Burkholderia gladioli in a patient with cystic fibrosis after lung transplantation. Pediatr Infect Dis J 1996; 15 (07) 637-639
  • 54 Kennedy MP, Coakley RD, Donaldson SH. et al. Burkholderia gladioli: five year experience in a cystic fibrosis and lung transplantation center. J Cyst Fibros 2007; 6 (04) 267-273
  • 55 Quon BS, Reid JD, Wong P. et al. Burkholderia gladioli - a predictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis. Can Respir J 2011; 18 (04) e64-e65
  • 56 Church AC, Sivasothy P, Parmer J, Foweraker J. Mediastinal abscess after lung transplantation secondary to Burkholderia gladioli infection. J Heart Lung Transplant 2009; 28 (05) 511-514
  • 57 Imataki O, Kita N, Nakayama-Imaohji H, Kida JI, Kuwahara T, Uemura M. Bronchiolitis and bacteraemia caused by Burkholderia gladioli in a non-lung transplantation patient. New Microbes New Infect 2014; 2 (06) 175-176
  • 58 Baklouti S, Massip C, Mane C. et al. Comment on: in vitro activity of seven β-lactams including ceftolozane/tazobactam and ceftazidime/avibactam against Burkholderia cepacia complex, Burkholderia gladioli and other non-fermentative Gram-negative bacilli isolated from cystic fibrosis patients. J Antimicrob Chemother 2019; 74 (10) 3122-3123
  • 59 Massip C, Mathieu C, Gaudru C. et al. In vitro activity of seven β-lactams including ceftolozane/tazobactam and ceftazidime/avibactam against Burkholderia cepacia complex, Burkholderia gladioli and other non-fermentative Gram-negative bacilli isolated from cystic fibrosis patients. J Antimicrob Chemother 2019; 74 (02) 525-528
  • 60 Mazer DM, Young C, Kalikin LM, Spilker T, LiPuma JJ. In vitro activity of ceftolozane-tazobactam and other antimicrobial agents against Burkholderia cepacia complex and Burkholderia gladioli . Antimicrob Agents Chemother 2017; 61 (09) 61
  • 61 Currie BJ, Ward L, Cheng AC. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 2010; 4 (11) e900
  • 62 Geake JB, Reid DW, Currie BJ. et al; MelioidCF Investigators. An international, multicentre evaluation and description of Burkholderia pseudomallei infection in cystic fibrosis. BMC Pulm Med 2015; 15: 116
  • 63 Vandamme P, Henry D, Coenye T. et al. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 2002; 33 (02) 143-149
  • 64 Savi D, De Biase RV, Amaddeo A. et al. Burkholderia pyrrocinia in cystic fibrosis lung transplantation: a case report. Transplant Proc 2014; 46 (01) 295-297
  • 65 Goodlet KJ, Nailor MD, Omar A. et al. Successful lung re-transplant in a patient with cepacia syndrome due to Burkholderia ambifaria . J Cyst Fibros 2019; 18 (01) e1-e4
  • 66 Goeman E, Shivam A, Downton TD, Glanville AR. Bacteremic Inquilinus limosus empyema in an Australian lung transplant patient with cystic fibrosis. J Heart Lung Transplant 2015; 34 (09) 1220-1223
  • 67 Bressler AM, Kaye KS, LiPuma JJ. et al. Risk factors for Burkholderia cepacia complex bacteremia among intensive care unit patients without cystic fibrosis: a case-control study. Infect Control Hosp Epidemiol 2007; 28 (08) 951-958
  • 68 Cassart M, Gevenois PA, Knoop C. et al. Pseudomonas aeruginosa aortic aneurysm after heart-lung transplantation for cystic fibrosis. Transplantation 1994; 58 (09) 1051-1053
  • 69 Daccò V, Claut L, Piconi S. et al. Successful ceftazidime-avibactam treatment of post-surgery Burkholderia multivorans genomovar II bacteremia and brain abscesses in a young lung transplanted woman with cystic fibrosis. Transpl Infect Dis 2019; 21 (03) e13082
  • 70 Balfour-Lynn IM, Ryley HC, Whitehead BF. Subdural empyema due to Burkholderia cepacia: an unusual complication after lung transplantation for cystic fibrosis. J R Soc Med 1997; 90 (Suppl. 31) 59-64
  • 71 Sheares BJ, Prince AS, Quittell LM, Neu NM, Bye MR. Pseudomonas aeruginosa endophthalmitis after lung transplantation for cystic fibrosis. Pediatr Infect Dis J 1997; 16 (08) 820-821
  • 72 Dua S, Chalermskulrat W, Miller MB, Landers M, Aris RM. Bilateral hematogenous Pseudomonas aeruginosa endophthalmitis after lung transplantation. Am J Transplant 2006; 6 (01) 219-224
  • 73 Webber SK, Andrews RA, Gillie RF, Cottrell DG, Agarwal K. Subretinal Pseudomonas abscess after lung transplantation. Br J Ophthalmol 1995; 79 (09) 861-866
  • 74 George RB, Cartier Y, Casson AG, Hernandez P. Suppurative mediastinitis secondary to Burkholderia cepacia in a patient with cystic fibrosis. Can Respir J 2006; 13 (04) 215-218
  • 75 Noyes BE, Michaels MG, Kurland G, Armitage JM, Orenstein DM. Pseudomonas cepacia empyema necessitatis after lung transplantation in two patients with cystic fibrosis. Chest 1994; 105 (06) 1888-1891
  • 76 Fallis RJ, Jablonski L, Moss S, Axelrod P, Clauss H. Infectious complications of bronchial stenosis in lung transplant recipients. Transpl Infect Dis 2019; 21 (04) e13100
  • 77 Morlacchi LC, Greer M, Tudorache I. et al. The burden of sinus disease in cystic fibrosis lung transplant recipients. Transpl Infect Dis 2018; 20 (05) e12924
  • 78 Choi KJ, Cheng TZ, Honeybrook AL. et al. Correlation between sinus and lung cultures in lung transplant patients with cystic fibrosis. Int Forum Allergy Rhinol 2018; 8 (03) 389-393
  • 79 Mainz JG, Hentschel J, Schien C. et al. Sinonasal persistence of Pseudomonas aeruginosa after lung transplantation. J Cyst Fibros 2012; 11 (02) 158-161
  • 80 Egan JJ, Chadwick P, Lowe L, Woodcock AA. The potential of nosocomial transmission of Pseudomonas cepacia exists at cardiopulmonary transplant centers. Chest 1994; 105 (05) 1630-1631
  • 81 Pegues DA, Carson LA, Tablan OC. et al; Summer Camp Study Group. Acquisition of Pseudomonas cepacia at summer camps for patients with cystic fibrosis. J Pediatr 1994; 124 (5, Pt 1): 694-702
  • 82 Holmes A, Nolan R, Taylor R. et al. An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis. J Infect Dis 1999; 179 (05) 1197-1205
  • 83 Biddick R, Spilker T, Martin A, LiPuma JJ. Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol Lett 2003; 228 (01) 57-62
  • 84 Döring G, Jansen S, Noll H. et al. Distribution and transmission of Pseudomonas aeruginosa and Burkholderia cepacia in a hospital ward. Pediatr Pulmonol 1996; 21 (02) 90-100
  • 85 Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J 2012; 40 (01) 227-238
  • 86 Fung SK, Dick H, Devlin H, Tullis E. Transmissibility and infection control implications of Burkholderia cepacia in cystic fibrosis. Can J Infect Dis 1998; 9 (03) 177-182
  • 87 Okamoto K, Santos CAQ. Management and prophylaxis of bacterial and mycobacterial infections among lung transplant recipients. Ann Transl Med 2020; 8 (06) 413
  • 88 Spence CD, Vanaudenaerde B, Einarsson GG. et al. Influence of azithromycin and allograft rejection on the post-lung transplant microbiota. J Heart Lung Transplant 2020; 39 (02) 176-183
  • 89 Smith S, Rowbotham NJ, Regan KH. Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev 2018; 3: CD001021
  • 90 Moore CA, Pilewski JM, Venkataramanan R. et al. Effect of aerosolized antipseudomonals on Pseudomonas positivity and bronchiolitis obliterans syndrome after lung transplantation. Transpl Infect Dis 2017; 19 (03) 19
  • 91 Tappenden P, Harnan S, Uttley L. et al. The cost effectiveness of dry powder antibiotics for the treatment of Pseudomonas aeruginosa in patients with cystic fibrosis. Pharmacoeconomics 2014; 32 (02) 159-172
  • 92 De Muynck B, Van Herck A, Sacreas A. et al; Leuven Lung Transplant Group. Successful Pseudomonas aeruginosa eradication improves outcomes after lung transplantation: a retrospective cohort analysis. Eur Respir J 2020; 56 (04) 2001720
  • 93 Cantón-Bulnes ML, Hurtado Martínez Á, López-Cerero L, Arenzana Seisdedos Á, Merino-Bohorquez V, Garnacho-Montero J. A case of pan-resistant Burkholderia cepacia complex bacteremic pneumonia, after lung transplantation treated with a targeted combination therapy. Transpl Infect Dis 2019; 21 (02) e13034
  • 94 Carillo C, Pecoraro Y, Anile M. et al. Colistin-based treatment of multidrug-resistant gram-negative bacterial pulmonary infections after lung transplantation. Transplant Proc 2019; 51 (01) 202-205
  • 95 Los-Arcos I, Len O, Martín-Gómez MT. et al. Lung transplantation in two cystic fibrosis patients infected with previously pandrug-resistant Burkholderia cepacia complex treated with ceftazidime-avibactam. Infection 2019; 47 (02) 289-292
  • 96 Papp-Wallace KM, Becka SA, Zeiser ET. et al. Overcoming an extremely drug resistant (XDR) pathogen: Avibactam restores susceptibility to Ceftazidime for Burkholderia cepacia complex isolates from cystic fibrosis patients. ACS Infect Dis 2017; 3 (07) 502-511
  • 97 Salizzoni S, Pilewski J, Toyoda Y. Lung transplant for a patient with cystic fibrosis and active Burkholderia cenocepacia pneumonia. Exp Clin Transplant 2014; 12 (05) 487-489
  • 98 Zeriouh M, Sabashnikov A, Patil NP. et al. Use of taurolidine in lung transplantation for cystic fibrosis and impact on bacterial colonization. Eur J Cardiothorac Surg 2018; 53 (03) 603-609
  • 99 Amore D, Pecoraro Y, Carillo C. et al. Use of ceftazidime-avibactam and ceftolozane-tazobactam after lung transplantation. Transplant Proc 2020; 52 (05) 1605-1607
  • 100 Arena F, Marchetti L, Henrici De Angelis L. et al. Ceftolozane-tazobactam pharmacokinetics during extracorporeal membrane oxygenation in a lung transplant recipient. Antimicrob Agents Chemother 2019; 63 (03) 63
  • 101 Aslam S, Courtwright AM, Koval C. et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am J Transplant 2019; 19 (09) 2631-2639
  • 102 Rubalskii E, Ruemke S, Salmoukas C. et al. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics (Basel) 2020; 9 (05) 9
  • 103 Shah A, Pasrija C, Boulos F. et al. Decontamination and lung transplantation of a patient with cystic fibrosis with resistant infections. Ann Thorac Surg 2019; 107 (04) e239-e241
  • 104 Cypel M, Waddell T, Singer LG. et al. Bilateral pneumonectomy to treat uncontrolled sepsis in a patient awaiting lung transplantation. J Thorac Cardiovasc Surg 2017; 153 (04) e67-e69
  • 105 Haja Mydin H, Corris PA, Nicholson A. et al. Targeted antibiotic prophylaxis for lung transplantation in cystic fibrosis patients colonised with Pseudomonas aeruginosa using multiple combination bactericidal testing. J Transplant 2012; 2012: 135738
  • 106 Sharma NS, Vestal G, Wille K. et al. Differences in airway microbiome and metabolome of single lung transplant recipients. Respir Res 2020; 21 (01) 104
  • 107 Lehr CJ, Skeans M, Dasenbrook E. et al. Effect of including important clinical variables on accuracy of the lung allocation score for cystic fibrosis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2019; 200 (08) 1013-1021
  • 108 Ramos KJ, Quon BS, Heltshe SL. et al. Heterogeneity in survival in adult patients with cystic fibrosis with FEV1 < 30% of predicted in the United States. Chest 2017; 151 (06) 1320-1328
  • 109 Ramos KJ, Quon BS, Psoter KJ. et al. Predictors of non-referral of patients with cystic fibrosis for lung transplant evaluation in the United States. J Cyst Fibros 2016; 15 (02) 196-203
  • 110 Riera J, Caralt B, López I. et al; Vall d'Hebron Lung Transplant Study Group. Ventilator-associated respiratory infection following lung transplantation. Eur Respir J 2015; 45 (03) 726-737
  • 111 Palacio F, Reyes LF, Levine DJ. et al. Understanding the concept of health care-associated pneumonia in lung transplant recipients. Chest 2015; 148 (02) 516-522
  • 112 Izhakian S, Wasser WG, Vainshelboim B, Pertzov B, Gorelik O, Kramer MR. Long-term outcomes of metallic endobronchial stents in lung transplant recipients are not affected by bacterial colonization. Interact Cardiovasc Thorac Surg 2021; 32 (01) 47-54
  • 113 McGinniss JE, Imai I, Simon-Soro A. et al. Molecular analysis of the endobronchial stent microbial biofilm reveals bacterial communities that associate with stent material and frequent fungal constituents. PLoS One 2019; 14 (05) e0217306
  • 114 Hadjiliadis D, Steele MP, Chaparro C. et al. Survival of lung transplant patients with cystic fibrosis harboring panresistant bacteria other than Burkholderia cepacia, compared with patients harboring sensitive bacteria. J Heart Lung Transplant 2007; 26 (08) 834-838
  • 115 Srour N, Chaparro C, Vandemheen K, Singer LG, Keshavjee S, Aaron SD. Effect of infection with transmissible strains of Pseudomonas aeruginosa on lung transplantation outcomes in patients with cystic fibrosis. J Heart Lung Transplant 2015; 34 (04) 588-593
  • 116 Kulkarni HS, Cherikh WS, Chambers DC. et al. Bronchiolitis obliterans syndrome-free survival after lung transplantation: an International Society for Heart and Lung Transplantation Thoracic Transplant Registry analysis. J Heart Lung Transplant 2019; 38 (01) 5-16
  • 117 Bernasconi E, Pattaroni C, Koutsokera A. et al; SysCLAD Consortium. Airway microbiota determines innate cell inflammatory or tissue remodeling profiles in lung transplantation. Am J Respir Crit Care Med 2016; 194 (10) 1252-1263
  • 118 Kulkarni HS, Tsui K, Sunder S. et al. Pseudomonas aeruginosa and acute rejection independently increase the risk of donor-specific antibodies after lung transplantation. Am J Transplant 2020; 20 (04) 1028-1038
  • 119 Weigt SS, Snyder LD. Demystifying “bad luck”: seemingly unrelated risk factors for CLAD may be connected by a common pathway. Am J Transplant 2020; 20 (04) 920-921
  • 120 Dickson RP, Erb-Downward JR, Freeman CM. et al. Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations. PLoS One 2014; 9 (05) e97214
  • 121 Mitchell AB, Oliver BG, Glanville AR. Translational aspects of the human respiratory virome. Am J Respir Crit Care Med 2016; 194 (12) 1458-1464