Semin Respir Crit Care Med 2021; 42(03): 368-379
DOI: 10.1055/s-0041-1728794
Review Article

Primary Graft Dysfunction

Jake G. Natalini
1   Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
2   Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
,
Joshua M. Diamond
1   Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
› Author Affiliations
Funding This work was supported by the National Heart, Lung, and Blood Institute, grant number T32HL007891 (J.G.N.).

Abstract

Primary graft dysfunction (PGD) is a form of acute lung injury after transplantation characterized by hypoxemia and the development of alveolar infiltrates on chest radiograph that occurs within 72 hours of reperfusion. PGD is among the most common early complications following lung transplantation and significantly contributes to increased short-term morbidity and mortality. In addition, severe PGD has been associated with higher 90-day and 1-year mortality rates compared with absent or less severe PGD and is a significant risk factor for the subsequent development of chronic lung allograft dysfunction. The International Society for Heart and Lung Transplantation released updated consensus guidelines in 2017, defining grade 3 PGD, the most severe form, by the presence of alveolar infiltrates and a ratio of PaO2:FiO2 less than 200. Multiple donor-related, recipient-related, and perioperative risk factors for PGD have been identified, many of which are potentially modifiable. Consistently identified risk factors include donor tobacco and alcohol use; increased recipient body mass index; recipient history of pulmonary hypertension, sarcoidosis, or pulmonary fibrosis; single lung transplantation; and use of cardiopulmonary bypass, among others. Several cellular pathways have been implicated in the pathogenesis of PGD, thus presenting several possible therapeutic targets for preventing and treating PGD. Notably, use of ex vivo lung perfusion (EVLP) has become more widespread and offers a potential platform to safely investigate novel PGD treatments while expanding the lung donor pool. Even in the presence of significantly prolonged ischemic times, EVLP has not been associated with an increased risk for PGD.

Authors' Contributions

J.G.N. produced an initial draft of the manuscript. J.G.N. and J.M.D. revised the manuscript for important intellectual content and have provided final approval of the version to be published.




Publication History

Article published online:
24 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Christie JD, Bellamy S, Ware LB. et al. Construct validity of the definition of primary graft dysfunction after lung transplantation. J Heart Lung Transplant 2010; 29 (11) 1231-1239
  • 2 Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D. ISHLT Working Group on Primary Lung Graft Dysfunction. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2005; 24 (10) 1454-1459
  • 3 Christie JD, Sager JS, Kimmel SE. et al. Impact of primary graft failure on outcomes following lung transplantation. Chest 2005; 127 (01) 161-165
  • 4 Christie JD, Kotloff RM, Ahya VN. et al. The effect of primary graft dysfunction on survival after lung transplantation. Am J Respir Crit Care Med 2005; 171 (11) 1312-1316
  • 5 Daud SA, Yusen RD, Meyers BF. et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2007; 175 (05) 507-513
  • 6 Whitson BA, Prekker ME, Herrington CS. et al. Primary graft dysfunction and long-term pulmonary function after lung transplantation. J Heart Lung Transplant 2007; 26 (10) 1004-1011
  • 7 Bharat A, Kuo E, Steward N. et al. Immunological link between primary graft dysfunction and chronic lung allograft rejection. Ann Thorac Surg 2008; 86 (01) 189-195 , discussion 196–197
  • 8 Snell GI, Yusen RD, Weill D. et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, Part I: Definition and grading—A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36 (10) 1097-1103
  • 9 Fisher AJ, Wardle J, Dark JH, Corris PA. Non-immune acute graft injury after lung transplantation and the risk of subsequent bronchiolitis obliterans syndrome (BOS). J Heart Lung Transplant 2002; 21 (11) 1206-1212
  • 10 Meyers BF, de la Morena M, Sweet SC. et al. Primary graft dysfunction and other selected complications of lung transplantation: a single-center experience of 983 patients. J Thorac Cardiovasc Surg 2005; 129 (06) 1421-1429
  • 11 Zenati M, Yousem SA, Dowling RD, Stein KL, Griffith BP. Primary graft failure following pulmonary transplantation. Transplantation 1990; 50 (01) 165-167
  • 12 Colombat M, Castier Y, Lesèche G. et al. Early expression of adhesion molecules after lung transplantation: evidence for a role of aggregated P-selectin-positive platelets in human primary graft failure. J Heart Lung Transplant 2004; 23 (09) 1087-1092
  • 13 Pereszlenyi Jr A, Harustiak S, Klepetko W. Extracorporeal membrane oxygenation in lung transplantation. Bratisl Lek Listy 2002; 103 (01) 34-35
  • 14 Oto T, Rosenfeldt F, Rowland M. et al. Extracorporeal membrane oxygenation after lung transplantation: evolving technique improves outcomes. Ann Thorac Surg 2004; 78 (04) 1230-1235
  • 15 Glassman LR, Keenan RJ, Fabrizio MC. et al. Extracorporeal membrane oxygenation as an adjunct treatment for primary graft failure in adult lung transplant recipients. J Thorac Cardiovasc Surg 1995; 110 (03) 723-726 , discussion 726–727
  • 16 Christie JD, Bavaria JE, Palevsky HI. et al. Primary graft failure following lung transplantation. Chest 1998; 114 (01) 51-60
  • 17 Anderson DC, Glazer HS, Semenkovich JW. et al. Lung transplant edema: chest radiography after lung transplantation–the first 10 days. Radiology 1995; 195 (01) 275-281
  • 18 Badesch DB, Zamora MR, Jones S, Campbell DW, Fullerton DA. Independent ventilation and ECMO for severe unilateral pulmonary edema after SLT for primary pulmonary hypertension. Chest 1995; 107 (06) 1766-1770
  • 19 Kundu S, Herman SJ, Winton TL. Reperfusion edema after lung transplantation: radiographic manifestations. Radiology 1998; 206 (01) 75-80
  • 20 Marom EM, Choi YW, Palmer SM, DeLong DM, Stuart MD, McAdams HP. Reperfusion edema after lung transplantation: effect of daclizumab. Radiology 2001; 221 (02) 508-514
  • 21 Ware LB, Golden JA, Finkbeiner WE, Matthay MA. Alveolar epithelial fluid transport capacity in reperfusion lung injury after lung transplantation. Am J Respir Crit Care Med 1999; 159 (03) 980-988
  • 22 Massard G, Rigolot JC, Hentz JG. et al. Hemodilution is an effective treatment for reperfusion edema after lung transplantation. Thorac Cardiovasc Surg 1995; 43 (05) 293-295
  • 23 Rabanal J, Mons R, Zurbano F, Ruiz I, Alcíbar J, Ortega J. [Reimplantation edema in the transplanted lung. Reperfusion-ischemia or hydrostatic edema?]. Rev Esp Anestesiol Reanim 2001; 48 (03) 146-150
  • 24 Mathur A, Baz M, Staples ED. et al. Cytokine profile after lung transplantation: correlation with allograft injury. Ann Thorac Surg 2006; 81 (05) 1844-1849 , discussion 1849–1850
  • 25 Belperio JA, Keane MP, Burdick MD. et al. CXCR2/CXCR2 ligand biology during lung transplant ischemia-reperfusion injury. J Immunol 2005; 175 (10) 6931-6939
  • 26 Thabut G, Brugière O, Lesèche G. et al. Preventive effect of inhaled nitric oxide and pentoxifylline on ischemia/reperfusion injury after lung transplantation. Transplantation 2001; 71 (09) 1295-1300
  • 27 Thabut G, Vinatier I, Brugière O. et al. Influence of preservation solution on early graft failure in clinical lung transplantation. Am J Respir Crit Care Med 2001; 164 (07) 1204-1208
  • 28 Fisher AJ, Donnelly SC, Hirani N. et al. Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med 2001; 163 (01) 259-265
  • 29 Oto T, Griffiths AP, Levvey BJ, Pilcher DV, Williams TJ, Snell GI. Definitions of primary graft dysfunction after lung transplantation: differences between bilateral and single lung transplantation. J Thorac Cardiovasc Surg 2006; 132 (01) 140-147
  • 30 Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest 2007; 132 (02) 410-417
  • 31 Diamond JM, Lee JC, Kawut SM. et al; Lung Transplant Outcomes Group. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2013; 187 (05) 527-534
  • 32 Porteous MK, Lee JC, Lederer DJ. et al; Lung Transplant Outcomes Group. Clinical risk factors and prognostic model for primary graft dysfunction after lung transplantation in patients with pulmonary hypertension. Ann Am Thorac Soc 2017; 14 (10) 1514-1522
  • 33 Porteous MK, Ky B, Kirkpatrick JN. et al. Diastolic dysfunction increases the risk of primary graft dysfunction after lung transplant. Am J Respir Crit Care Med 2016; 193 (12) 1392-1400
  • 34 Shah RJ, Diamond JM, Cantu E. et al. Objective estimates improve risk stratification for primary graft dysfunction after lung transplantation. Am J Transplant 2015; 15 (08) 2188-2196
  • 35 Cantu E, Diamond JM, Suzuki Y. et al; Lung Transplant Outcomes Group. Quantitative evidence for revising the definition of primary graft dysfunction after lung transplant. Am J Respir Crit Care Med 2018; 197 (02) 235-243
  • 36 Slama A, Schillab L, Barta M. et al. Standard donor lung procurement with normothermic ex vivo lung perfusion: a prospective randomized clinical trial. J Heart Lung Transplant 2017; 36 (07) 744-753
  • 37 Boffini M, Ricci D, Bonato R. et al. Incidence and severity of primary graft dysfunction after lung transplantation using rejected grafts reconditioned with ex vivo lung perfusion. Eur J Cardiothorac Surg 2014; 46 (05) 789-793
  • 38 Barbas AS, Knechtle SJ. Expanding the donor pool with normothermic ex vivo liver perfusion: the future is now. Am J Transplant 2016; 16 (11) 3075-3076
  • 39 Chiu S, Mills SEA, Bharat A. Expanding the lung donor pool and improving outcomes: ex vivo lung perfusion. JAMA Surg 2019; 154 (12) 1151
  • 40 Popov AF, Sabashnikov A, Patil NP. et al. Ex vivo lung perfusion - state of the art in lung donor pool expansion. Med Sci Monit Basic Res 2015; 21: 9-14
  • 41 Haydock DA, Trulock EP, Kaiser LR, Knight SR, Pasque MK, Cooper JD. Washington University Lung Transplant Group. Management of dysfunction in the transplanted lung: experience with 7 clinical cases. Ann Thorac Surg 1992; 53 (04) 635-641
  • 42 Sleiman C, Mal H, Fournier M. et al. Pulmonary reimplantation response in single-lung transplantation. Eur Respir J 1995; 8 (01) 5-9
  • 43 Khan SU, Salloum J, O'Donovan PB. et al. Acute pulmonary edema after lung transplantation: the pulmonary reimplantation response. Chest 1999; 116 (01) 187-194
  • 44 Diamond JM, Arcasoy S, Kennedy CC. et al. Report of the International Society for Heart and Lung Transplantation Working Group on Primary Lung Graft Dysfunction, Part II: Epidemiology, risk factors, and outcomes—A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36 (10) 1104-1113
  • 45 Kreisel D, Krupnick AS, Puri V. et al. Short- and long-term outcomes of 1000 adult lung transplant recipients at a single center. J Thorac Cardiovasc Surg 2011; 141 (01) 215-222
  • 46 Huang HJ, Yusen RD, Meyers BF. et al. Late primary graft dysfunction after lung transplantation and bronchiolitis obliterans syndrome. Am J Transplant 2008; 8 (11) 2454-2462
  • 47 Prekker ME, Nath DS, Walker AR. et al. Validation of the proposed International Society for Heart and Lung Transplantation grading system for primary graft dysfunction after lung transplantation. J Heart Lung Transplant 2006; 25 (04) 371-378
  • 48 Porteous MK, Lee JC. Primary graft dysfunction after lung transplantation. Clin Chest Med 2017; 38 (04) 641-654
  • 49 Balsara KR, Krupnick AS, Bell JM. et al. A single-center experience of 1500 lung transplant patients. J Thorac Cardiovasc Surg 2018; 156 (02) 894-905.e3
  • 50 Briot R, Frank JA, Uchida T, Lee JW, Calfee CS, Matthay MA. Elevated levels of the receptor for advanced glycation end products, a marker of alveolar epithelial type I cell injury, predict impaired alveolar fluid clearance in isolated perfused human lungs. Chest 2009; 135 (02) 269-275
  • 51 Christie JD, Shah CV, Kawut SM. et al; Lung Transplant Outcomes Group. Plasma levels of receptor for advanced glycation end products, blood transfusion, and risk of primary graft dysfunction. Am J Respir Crit Care Med 2009; 180 (10) 1010-1015
  • 52 Pelaez A, Force SD, Gal AA. et al. Receptor for advanced glycation end products in donor lungs is associated with primary graft dysfunction after lung transplantation. Am J Transplant 2010; 10 (04) 900-907
  • 53 Bobadilla JL, Love RB, Jankowska-Gan E. et al. Th-17, monokines, collagen type V, and primary graft dysfunction in lung transplantation. Am J Respir Crit Care Med 2008; 177 (06) 660-668
  • 54 Iwata T, Philipovskiy A, Fisher AJ. et al. Anti-type V collagen humoral immunity in lung transplant primary graft dysfunction. J Immunol 2008; 181 (08) 5738-5747
  • 55 Diamond JM, Kawut SM, Lederer DJ. et al; Lung Transplant Outcomes Group. Elevated plasma Clara cell secretory protein concentration is associated with high-grade primary graft dysfunction. Am J Transplant 2011; 11 (03) 561-567
  • 56 Weber DJ, Gracon AS, Ripsch MS. et al. The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation. Sci Transl Med 2014; 6 (252) 252ra124
  • 57 Krenn K, Klepetko W, Taghavi S, Lang G, Schneider B, Aharinejad S. Recipient vascular endothelial growth factor serum levels predict primary lung graft dysfunction. Am J Transplant 2007; 7 (03) 700-706
  • 58 Krenn K, Klepetko W, Taghavi S, Paulus P, Aharinejad S. Vascular endothelial growth factor increases pulmonary vascular permeability in cystic fibrosis patients undergoing lung transplantation. Eur J Cardiothorac Surg 2007; 32 (01) 35-41
  • 59 Salama M, Andrukhova O, Hoda MA. et al. Concomitant endothelin-1 overexpression in lung transplant donors and recipients predicts primary graft dysfunction. Am J Transplant 2010; 10 (03) 628-636
  • 60 Diamond JM, Porteous MK, Cantu E. et al; Lung Transplant Outcomes Group. Elevated plasma angiopoietin-2 levels and primary graft dysfunction after lung transplantation. PLoS One 2012; 7 (12) e51932
  • 61 Hoffman SA, Wang L, Shah CV. et al; Lung Transplant Outcomes Group. Plasma cytokines and chemokines in primary graft dysfunction post-lung transplantation. Am J Transplant 2009; 9 (02) 389-396
  • 62 Shah RJ, Diamond JM, Lederer DJ. et al. Plasma monocyte chemotactic protein-1 levels at 24 hours are a biomarker of primary graft dysfunction after lung transplantation. Transl Res 2012; 160 (06) 435-442
  • 63 De Perrot M, Sekine Y, Fischer S. et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 2002; 165 (02) 211-215
  • 64 Machuca TN, Cypel M, Yeung JC. et al. Protein expression profiling predicts graft performance in clinical ex vivo lung perfusion. Ann Surg 2015; 261 (03) 591-597
  • 65 Moreno I, Vicente R, Ramos F, Vicente JL, Barberá M. Determination of interleukin-6 in lung transplantation: association with primary graft dysfunction. Transplant Proc 2007; 39 (07) 2425-2426
  • 66 Cantu E, Lederer DJ, Meyer K. et al; CTOT Investigators. Gene set enrichment analysis identifies key innate immune pathways in primary graft dysfunction after lung transplantation. Am J Transplant 2013; 13 (07) 1898-1904
  • 67 Diamond JM, Feng R, Meyer NJ. et al. Functional TLR4 polymorphisms are associated with lower risk of primary graft dysfunction (PGD) after lung transplantation. J Heart Lung Transplant 2012; 31 (04) S76
  • 68 Mallavia B, Liu F, Lefrançais E. et al. Mitochondrial DNA stimulates TLR9-dependent neutrophil extracellular trap formation in primary graft dysfunction. Am J Respir Cell Mol Biol 2020; 62 (03) 364-372
  • 69 Diamond JM, Lederer DJ, Kawut SM. et al; Lung Transplant Outcomes Group. Elevated plasma long pentraxin-3 levels and primary graft dysfunction after lung transplantation for idiopathic pulmonary fibrosis. Am J Transplant 2011; 11 (11) 2517-2522
  • 70 Diamond JM, Meyer NJ, Feng R. et al; Lung Transplant Outcomes Group. Variation in PTX3 is associated with primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2012; 186 (06) 546-552
  • 71 Diamond JM, Ramphal K, Porteous MK, Cantu III E, Christie JD, Kawut SM. Lung Transplant Outcomes Group. Association of long pentraxin-3 with pulmonary hypertension and primary graft dysfunction in lung transplant recipients. J Heart Lung Transplant 2018; 37 (06) 792-794
  • 72 Monticelli LA, Diamond JM, Saenz SA. et al. Lung innate lymphoid cell composition is altered in primary graft dysfunction. Am J Respir Crit Care Med 2020; 201 (01) 63-72
  • 73 Cantu E, Shah RJ, Lin W. et al; Lung Transplant Outcomes Group Investigators. Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg 2015; 149 (02) 596-602
  • 74 Diamond JM, Christie JD. The contribution of airway and lung tissue ischemia to primary graft dysfunction. Curr Opin Organ Transplant 2010; 15 (05) 552-557
  • 75 Haque MA, Mizobuchi T, Yasufuku K. et al. Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol 2002; 169 (03) 1542-1549
  • 76 Yoshida S, Haque A, Mizobuchi T. et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant 2006; 6 (04) 724-735
  • 77 Shah RJ, Wickersham N, Lederer DJ. et al; Lung Transplant Outcomes Group. Preoperative plasma club (Clara) cell secretory protein levels are associated with primary graft dysfunction after lung transplantation. Am J Transplant 2014; 14 (02) 446-452
  • 78 Sharma AK, LaPar DJ, Stone ML, Zhao Y, Kron IL, Laubach VE. Receptor for advanced glycation end products (RAGE) on iNKT cells mediates lung ischemia-reperfusion injury. Am J Transplant 2013; 13 (09) 2255-2267
  • 79 Porteous MK, Diamond JM, Christie JD. Primary graft dysfunction: lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Transplant 2015; 20 (05) 506-514
  • 80 Sharma AK, LaPar DJ, Zhao Y. et al. Natural killer T cell-derived IL-17 mediates lung ischemia-reperfusion injury. Am J Respir Crit Care Med 2011; 183 (11) 1539-1549
  • 81 Weber DJ, Allette YM, Wilkes DS, White FA. The HMGB1-RAGE inflammatory pathway: implications for brain injury-induced pulmonary dysfunction. Antioxid Redox Signal 2015; 23 (17) 1316-1328
  • 82 Chatterjee S, Levitan I, Wei Z, Fisher AB. KATP channels are an important component of the shear-sensing mechanism in the pulmonary microvasculature. Microcirculation 2006; 13 (08) 633-644
  • 83 Chatterjee S, Nieman GF, Christie JD, Fisher AB. Shear stress-related mechanosignaling with lung ischemia: lessons from basic research can inform lung transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 307 (09) L668-L680
  • 84 al-Mehdi AB, Ischiropoulos H, Fisher AB. Endothelial cell oxidant generation during K(+)-induced membrane depolarization. J Cell Physiol 1996; 166 (02) 274-280
  • 85 al-Mehdi AB, Shuman H, Fisher AB. Oxidant generation with K(+)-induced depolarization in the isolated perfused lung. Free Radic Biol Med 1997; 23 (01) 47-56
  • 86 Wei Z, Costa K, Al-Mehdi AB, Dodia C, Muzykantov V, Fisher AB. Simulated ischemia in flow-adapted endothelial cells leads to generation of reactive oxygen species and cell signaling. Circ Res 1999; 85 (08) 682-689
  • 87 Sharma AK, Mulloy DP, Le LT, Laubach VE. NADPH oxidase mediates synergistic effects of IL-17 and TNF-α on CXCL1 expression by epithelial cells after lung ischemia-reperfusion. Am J Physiol Lung Cell Mol Physiol 2014; 306 (01) L69-L79
  • 88 Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 1988; 331 (6152): 168-170
  • 89 Abraham D, Taghavi S, Riml P. et al. VEGF-A and -C but not -B mediate increased vascular permeability in preserved lung grafts. Transplantation 2002; 73 (11) 1703-1706
  • 90 van der Heijden M, van Nieuw Amerongen GP, Koolwijk P, van Hinsbergh VW, Groeneveld AB. Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax 2008; 63 (10) 903-909
  • 91 Taghavi S, Abraham D, Riml P. et al. Co-expression of endothelin-1 and vascular endothelial growth factor mediates increased vascular permeability in lung grafts before reperfusion. J Heart Lung Transplant 2002; 21 (05) 600-603
  • 92 Zhao X, Jin Y, Li H, Wang Z, Zhang W, Feng C. Hypoxia-inducible factor 1 alpha contributes to pulmonary vascular dysfunction in lung ischemia-reperfusion injury. Int J Clin Exp Pathol 2014; 7 (06) 3081-3088
  • 93 Stone ML, Sharma AK, Zhao Y. et al. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2015; 308 (12) L1245-L1252
  • 94 Okazaki M, Kreisel F, Richardson SB. et al. Sphingosine 1-phosphate inhibits ischemia reperfusion injury following experimental lung transplantation. Am J Transplant 2007; 7 (04) 751-758
  • 95 Naidu BV, Krishnadasan B, Farivar AS. et al. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2003; 126 (01) 200-207
  • 96 Zhao M, Fernandez LG, Doctor A. et al. Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2006; 291 (05) L1018-L1026
  • 97 Spahn JH, Li W, Bribriesco AC. et al. DAP12 expression in lung macrophages mediates ischemia/reperfusion injury by promoting neutrophil extravasation. J Immunol 2015; 194 (08) 4039-4048
  • 98 Lemay S, Rabb H, Postler G, Singh AK. Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia-reperfusion injury. Transplantation 2000; 69 (05) 959-963
  • 99 Gerlach J, Jörres A, Nohr R, Zeilinger K, Spatkowski G, Neuhaus P. Local liberation of cytokines during liver preservation. Transpl Int 1999; 12 (04) 261-265
  • 100 Oz MC, Liao H, Naka Y. et al. Ischemia-induced interleukin-8 release after human heart transplantation. A potential role for endothelial cells. Circulation 1995; 92 (9, Suppl): II428-II432
  • 101 Serrick C, Adoumie R, Giaid A, Shennib H. The early release of interleukin-2, tumor necrosis factor-alpha and interferon-gamma after ischemia reperfusion injury in the lung allograft. Transplantation 1994; 58 (11) 1158-1162
  • 102 Krishnadasan B, Naidu BV, Byrne K, Fraga C, Verrier ED, Mulligan MS. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2003; 125 (02) 261-272
  • 103 Naidu BV, Woolley SM, Farivar AS. et al. Early tumor necrosis factor-alpha release from the pulmonary macrophage in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2004; 127 (05) 1502-1508
  • 104 Gelman AE, Okazaki M, Sugimoto S. et al. CCR2 regulates monocyte recruitment as well as CD4 T1 allorecognition after lung transplantation. Am J Transplant 2010; 10 (05) 1189-1199
  • 105 De Perrot M, Sekine Y, Fischer S. et al. Interleukin-8 release during ischemia-reperfusion correlates with early graft function in human lung transplantation. J Heart Lung Transplant 2001; 20 (02) 175-176
  • 106 Parsons PE, Eisner MD, Thompson BT. et al; NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 2005; 33 (01) 1-6 , discussion 230–232
  • 107 Yang Z, Sharma AK, Linden J, Kron IL, Laubach VE. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2009; 137 (03) 695-702 , discussion 702
  • 108 Eppinger MJ, Jones ML, Deeb GM, Bolling SF, Ward PA. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res 1995; 58 (06) 713-718
  • 109 Fiser SM, Tribble CG, Long SM. et al. Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response. J Thorac Cardiovasc Surg 2001; 121 (06) 1069-1075
  • 110 de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2003; 167 (04) 490-511
  • 111 Johnston LK, Rims CR, Gill SE, McGuire JK, Manicone AM. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol 2012; 47 (04) 417-426
  • 112 van der Kaaij NP, Kluin J, Haitsma JJ. et al. Ischemia of the lung causes extensive long-term pulmonary injury: an experimental study. Respir Res 2008; 9: 28
  • 113 Zanotti G, Casiraghi M, Abano JB. et al. Novel critical role of toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol 2009; 297 (01) L52-L63
  • 114 Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg 2006; 82 (06) 2017-2023
  • 115 Phelan P, Merry HE, Hwang B, Mulligan MS. Differential toll-like receptor activation in lung ischemia reperfusion injury. J Thorac Cardiovasc Surg 2015; 149 (06) 1653-1661
  • 116 Merry HE, Phelan P, Doak MR, Zhao M, Hwang B, Mulligan MS. Role of toll-like receptor-4 in lung ischemia-reperfusion injury. Ann Thorac Surg 2015; 99 (04) 1193-1199
  • 117 Kreisel D, Goldstein DR. Innate immunity and organ transplantation: focus on lung transplantation. Transpl Int 2013; 26 (01) 2-10
  • 118 Michaud GC, Channick CL, Law AC. et al. ATS Core Curriculum 2016. Part IV. Adult pulmonary medicine core curriculum. Ann Am Thorac Soc 2016; 13 (07) 1160-1169
  • 119 Monticelli LA, Sonnenberg GF, Abt MC. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12 (11) 1045-1054
  • 120 Monticelli LA, Sonnenberg GF, Artis D. Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Curr Opin Immunol 2012; 24 (03) 284-289
  • 121 Kulkarni HS, Ramphal K, Ma L. et al. Local complement activation is associated with primary graft dysfunction after lung transplantation. JCI Insight 2020; 5 (17) 5
  • 122 Laubach VE, Sharma AK. Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Transplant 2016; 21 (03) 246-252
  • 123 Gielis JF, Boulet GA, Briedé JJ. et al. Longitudinal quantification of radical bursts during pulmonary ischaemia and reperfusion. Eur J Cardiothorac Surg 2015; 48 (04) 622-629
  • 124 Sharma AK, LaPar DJ, Stone ML. et al. NOX2 activation of natural killer T cells is blocked by the adenosine A2A receptor to inhibit lung ischemia-reperfusion injury. Am J Respir Crit Care Med 2016; 193 (09) 988-999
  • 125 Ferrari RS, Andrade CF. Oxidative stress and lung ischemia-reperfusion injury. Oxid Med Cell Longev 2015; 2015: 590987
  • 126 Sharma AK, Laubach VE, Ramos SI. et al. Adenosine A2A receptor activation on CD4+ T lymphocytes and neutrophils attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2010; 139 (02) 474-482
  • 127 Inci I, Zhai W, Arni S, Hillinger S, Vogt P, Weder W. N-acetylcysteine attenuates lung ischemia-reperfusion injury after lung transplantation. Ann Thorac Surg 2007; 84 (01) 240-246 , discussion 246
  • 128 Whitson BA, Nath DS, Johnson AC. et al. Risk factors for primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg 2006; 131 (01) 73-80
  • 129 King RC, Binns OA, Rodriguez F. et al. Reperfusion injury significantly impacts clinical outcome after pulmonary transplantation. Ann Thorac Surg 2000; 69 (06) 1681-1685
  • 130 Thabut G, Vinatier I, Stern JB. et al. Primary graft failure following lung transplantation: predictive factors of mortality. Chest 2002; 121 (06) 1876-1882
  • 131 Christie JD, Kotloff RM, Pochettino A. et al. Clinical risk factors for primary graft failure following lung transplantation. Chest 2003; 124 (04) 1232-1241
  • 132 Pelaez A, Mitchell PO, Shah NS. et al. The role of donor chronic alcohol abuse in the development of primary graft dysfunction in lung transplant recipients. Am J Med Sci 2015; 349 (02) 117-123
  • 133 Barr ML, Kawut SM, Whelan TP. et al; ISHLT Working Group on Primary Lung Graft Dysfunction. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part IV: recipient-related risk factors and markers. J Heart Lung Transplant 2005; 24 (10) 1468-1482
  • 134 de Perrot M, Bonser RS, Dark J. et al; ISHLT Working Group on Primary Lung Graft Dysfunction. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: donor-related risk factors and markers. J Heart Lung Transplant 2005; 24 (10) 1460-1467
  • 135 Kuntz CL, Hadjiliadis D, Ahya VN. et al. Risk factors for early primary graft dysfunction after lung transplantation: a registry study. Clin Transplant 2009; 23 (06) 819-830
  • 136 Liu Y, Liu Y, Su L, Jiang SJ. Recipient-related clinical risk factors for primary graft dysfunction after lung transplantation: a systematic review and meta-analysis. PLoS One 2014; 9 (03) e92773
  • 137 Nosotti M, Palleschi A, Rosso L. et al. Clinical risk factors for primary graft dysfunction in a low-volume lung transplantation center. Transplant Proc 2014; 46 (07) 2329-2333
  • 138 Lowery EM, Kuhlmann EA, Mahoney EL, Dilling DF, Kliethermes SA, Kovacs EJ. Heavy alcohol use in lung donors increases the risk for primary graft dysfunction. Alcohol Clin Exp Res 2014; 38 (11) 2853-2861
  • 139 Novick RJ, Bennett LE, Meyer DM, Hosenpud JD. Influence of graft ischemic time and donor age on survival after lung transplantation. J Heart Lung Transplant 1999; 18 (05) 425-431
  • 140 Allen JG, Lee MT, Weiss ES, Arnaoutakis GJ, Shah AS, Detrick B. Preoperative recipient cytokine levels are associated with early lung allograft dysfunction. Ann Thorac Surg 2012; 93 (06) 1843-1849
  • 141 Samano MN, Fernandes LM, Baranauskas JC. et al. Risk factors and survival impact of primary graft dysfunction after lung transplantation in a single institution. Transplant Proc 2012; 44 (08) 2462-2468
  • 142 Burton CM, Iversen M, Milman N. et al. Outcome of lung transplanted patients with primary graft dysfunction. Eur J Cardiothorac Surg 2007; 31 (01) 75-82
  • 143 Fang A, Studer S, Kawut SM. et al; Lung Transplant Outcomes Group. Elevated pulmonary artery pressure is a risk factor for primary graft dysfunction following lung transplantation for idiopathic pulmonary fibrosis. Chest 2011; 139 (04) 782-787
  • 144 Felten ML, Sinaceur M, Treilhaud M. et al. Factors associated with early graft dysfunction in cystic fibrosis patients receiving primary bilateral lung transplantation. Eur J Cardiothorac Surg 2012; 41 (03) 686-690
  • 145 Lee JC, Christie JD, Keshavjee S. Primary graft dysfunction: definition, risk factors, short- and long-term outcomes. Semin Respir Crit Care Med 2010; 31 (02) 161-171
  • 146 Suzuki Y, Cantu E, Christie JD. Primary graft dysfunction. Semin Respir Crit Care Med 2013; 34 (03) 305-319
  • 147 Lee JC, Christie JD. Primary graft dysfunction. Proc Am Thorac Soc 2009; 6 (01) 39-46
  • 148 Shah RJ, Diamond JM. Primary graft dysfunction (PGD) following lung transplantation. Semin Respir Crit Care Med 2018; 39 (02) 148-154
  • 149 Baldwin MR, Peterson ER, Easthausen I. et al. Donor age and early graft failure after lung transplantation: a cohort study. Am J Transplant 2013; 13 (10) 2685-2695
  • 150 Nagendran M, Maruthappu M, Sugand K. Should double lung transplant be performed with or without cardiopulmonary bypass?. Interact Cardiovasc Thorac Surg 2011; 12 (05) 799-804
  • 151 Szeto WY, Kreisel D, Karakousis GC. et al. Cardiopulmonary bypass for bilateral sequential lung transplantation in patients with chronic obstructive pulmonary disease without adverse effect on lung function or clinical outcome. J Thorac Cardiovasc Surg 2002; 124 (02) 241-249
  • 152 Borders CF, Suzuki Y, Lasky J. et al. Massive donor transfusion potentially increases recipient mortality after lung transplantation. J Thorac Cardiovasc Surg 2017; 153 (05) 1197-1203.e2
  • 153 Schweitzer KS, Hatoum H, Brown MB. et al. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides. Am J Physiol Lung Cell Mol Physiol 2011; 301 (06) L836-L846
  • 154 Ware LB, Lee JW, Wickersham N, Nguyen J, Matthay MA, Calfee CS. California Transplant Donor Network. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs. Am J Transplant 2014; 14 (10) 2295-2302
  • 155 Lederer DJ, Kawut SM, Wickersham N. et al; Lung Transplant Outcomes Group. Obesity and primary graft dysfunction after lung transplantation: the Lung Transplant Outcomes Group Obesity Study. Am J Respir Crit Care Med 2011; 184 (09) 1055-1061
  • 156 Anderson MR, Udupa JK, Edwin E. et al. Adipose tissue quantification and primary graft dysfunction after lung transplantation: The Lung Transplant Body Composition study. J Heart Lung Transplant 2019; 38 (12) 1246-1256
  • 157 Diamond JM, Akimova T, Kazi A. et al; Lung Transplant Outcomes Group. Genetic variation in the prostaglandin E2 pathway is associated with primary graft dysfunction. Am J Respir Crit Care Med 2014; 189 (05) 567-575
  • 158 Cantu E, Suzuki Y, Diamond JM. et al; Lung Transplant Outcomes Group. Protein quantitative trait loci analysis identifies genetic variation in the innate immune regulator TOLLIP in post-lung transplant primary graft dysfunction risk. Am J Transplant 2016; 16 (03) 833-840
  • 159 Somers J, Ruttens D, Verleden SE. et al. Interleukin-17 receptor polymorphism predisposes to primary graft dysfunction after lung transplantation. J Heart Lung Transplant 2015; 34 (07) 941-949
  • 160 Eberlein M, Reed RM, Bolukbas S. et al; Lung Transplant Outcomes Group. Lung size mismatch and primary graft dysfunction after bilateral lung transplantation. J Heart Lung Transplant 2015; 34 (02) 233-240
  • 161 Eberlein M, Diehl E, Bolukbas S, Merlo CA, Reed RM. An oversized allograft is associated with improved survival after lung transplantation for idiopathic pulmonary arterial hypertension. J Heart Lung Transplant 2013; 32 (12) 1172-1178
  • 162 Bacha EA, Hervé P, Murakami S. et al; Paris-Sud University Lung Transplantation Group. Lasting beneficial effect of short-term inhaled nitric oxide on graft function after lung transplantation. J Thorac Cardiovasc Surg 1996; 112 (03) 590-598
  • 163 Botha P, Jeyakanthan M, Rao JN. et al. Inhaled nitric oxide for modulation of ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant 2007; 26 (11) 1199-1205
  • 164 Meade MO, Granton JT, Matte-Martyn A. et al; Toronto Lung Transplant Program. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med 2003; 167 (11) 1483-1489
  • 165 Tavare AN, Tsakok T. Does prophylactic inhaled nitric oxide reduce morbidity and mortality after lung transplantation?. Interact Cardiovasc Thorac Surg 2011; 13 (05) 516-520
  • 166 Yerebakan C, Ugurlucan M, Bayraktar S, Bethea BT, Conte JV. Effects of inhaled nitric oxide following lung transplantation. J Card Surg 2009; 24 (03) 269-274
  • 167 Herrington CS, Prekker ME, Arrington AK. et al. A randomized, placebo-controlled trial of aprotinin to reduce primary graft dysfunction following lung transplantation. Clin Transplant 2011; 25 (01) 90-96
  • 168 Zamora MR, Davis RD, Keshavjee SH. et al. Complement inhibition attenuates human lung transplant reperfusion injury: a multicenter trial. Chest 1999; 116 (1, Suppl): 46S
  • 169 Wittwer T, Grote M, Oppelt P, Franke U, Schaefers HJ, Wahlers T. Impact of PAF antagonist BN 52021 (Ginkolide B) on post-ischemic graft function in clinical lung transplantation. J Heart Lung Transplant 2001; 20 (03) 358-363
  • 170 Strüber M, Fischer S, Niedermeyer J. et al. Effects of exogenous surfactant instillation in clinical lung transplantation: a prospective, randomized trial. J Thorac Cardiovasc Surg 2007; 133 (06) 1620-1625
  • 171 Keshavjee S, Davis RD, Zamora MR, de Perrot M, Patterson GA. A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg 2005; 129 (02) 423-428
  • 172 Yeung JC, Krueger T, Yasufuku K. et al. Outcomes after transplantation of lungs preserved for more than 12 h: a retrospective study. Lancet Respir Med 2017; 5 (02) 119-124
  • 173 Divithotawela C, Cypel M, Martinu T. et al. Long-term outcomes of lung transplant with ex vivo lung perfusion. JAMA Surg 2019; 154 (12) 1143-1150
  • 174 Beer A, Reed RM, Bölükbas S. et al. Mechanical ventilation after lung transplantation. An international survey of practices and preferences. Ann Am Thorac Soc 2014; 11 (04) 546-553
  • 175 Currey J, Pilcher DV, Davies A. et al. Implementation of a management guideline aimed at minimizing the severity of primary graft dysfunction after lung transplant. J Thorac Cardiovasc Surg 2010; 139 (01) 154-161
  • 176 Diamond JM, Ahya VN. Mechanical ventilation after lung transplantation. It's time for a trial. Ann Am Thorac Soc 2014; 11 (04) 598-599
  • 177 Date H, Triantafillou AN, Trulock EP, Pohl MS, Cooper JD, Patterson GA. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg 1996; 111 (05) 913-919
  • 178 Adatia I, Lillehei C, Arnold JH. et al. Inhaled nitric oxide in the treatment of postoperative graft dysfunction after lung transplantation. Ann Thorac Surg 1994; 57 (05) 1311-1318
  • 179 Macdonald P, Mundy J, Rogers P. et al. Successful treatment of life-threatening acute reperfusion injury after lung transplantation with inhaled nitric oxide. J Thorac Cardiovasc Surg 1995; 110 (03) 861-863
  • 180 Wigfield CH, Lindsey JD, Steffens TG, Edwards NM, Love RB. Early institution of extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation improves outcome. J Heart Lung Transplant 2007; 26 (04) 331-338
  • 181 Fischer S, Bohn D, Rycus P. et al. Extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation: analysis of the Extracorporeal Life Support Organization (ELSO) registry. J Heart Lung Transplant 2007; 26 (05) 472-477
  • 182 Bermudez CA, Adusumilli PS, McCurry KR. et al. Extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation: long-term survival. Ann Thorac Surg 2009; 87 (03) 854-860
  • 183 Meyers BF, Sundt III TM, Henry S. et al. Selective use of extracorporeal membrane oxygenation is warranted after lung transplantation. J Thorac Cardiovasc Surg 2000; 120 (01) 20-26
  • 184 Kawut SM, Lederer DJ, Keshavjee S. et al. Outcomes after lung retransplantation in the modern era. Am J Respir Crit Care Med 2008; 177 (01) 114-120