Skip to main content

Advertisement

Log in

Nutrients addition regulates temperature sensitivity of maize straw mineralization

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The study aimed to determine the interactive effect of temperature with nutrients on maize residues decomposition in soil.

Materials and methods

We conducted an incubation of 87 days by applying maize straw (δ13C value of −11.2‰) to soil (δ13C value of −26.3‰) with low (N0), medium (NM), and high (NH) level of nutrients addition, at two temperature levels of 5 °C (T-L) and 25 °C (T-H). We measured the cumulative CO2-C efflux, residues decomposition, temperature sensitivity (Q10), and extracellular enzyme activities.

Results and discussion

Increased temperature significantly increased cumulative CO2 efflux and straw decomposition, with an enhanced rate of active (Ka) and slow (Ks) pools of soil and residues C. The mean values of Q10 ranged from 1.4 to 1.6 for the total CO2 efflux and 1.4 to 1.7 for maize straw decomposition. The outcome might be due to temperature-dependent microbial activation at 25 °C. The activities of β-glucosidase, α-glucosidase, cellobiohydrolase, and β-xylosidase enzymes were positively correlated with cumulative CO2 emissions at 25 °C suggesting microbial regulation on SOM decomposition. We found a U-shaped pattern of nutrients regulation on the temperature sensitivity of maize straw decomposition, with the lowest Q10 under NM.

Conclusions

Our findings suggest that nutrients regulated the temperature effects on residue C decomposition by adjusting microbial activity (extracellular enzyme activities). Consequently, it may lead to soil C sequestration under the current climate change scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. https://doi.org/10.1016/j.soilbio.2004.09.014

    Article  CAS  Google Scholar 

  • Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39:1878–1887. https://doi.org/10.1016/j.soilbio.2007.02.001

    Article  CAS  Google Scholar 

  • Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A (eds) Soil Enzymology. Springer, Berlin Heidelberg, pp 229–243

    Google Scholar 

  • Alvarez G, Shahzad T, Andanson L, Bahn M, Wallenstein MD, Fontaine S (2018) Catalytic power of enzymes decreases with temperature: new insights for understanding soil C cycling and microbial ecology under warming. Glob Chang Biol 24:4238–4250. https://doi.org/10.1111/gcb.14281

    Article  Google Scholar 

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Chapter 6 Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter, 1st edn. Elsevier Inc.

  • Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agric Ecosyst Environ 121:5–20. https://doi.org/10.1016/j.agee.2006.12.002

    Article  CAS  Google Scholar 

  • Aoyama M, Angers DA, Dayegamiye AN, Bissonnette N (2000) Metabolism of 13C-labeled glucose in aggregates from soils with manure application. Soil Biol Biochem 32:295–300

    Article  CAS  Google Scholar 

  • Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T, Valášková V (2013) Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem 56:60–68

    Article  CAS  Google Scholar 

  • Bandau F, Albrectsen BR, Julkunen-Tiitto R, Gundale MJ (2017) Genotypic variability in Populus tremula L. affects how anthropogenic nitrogen enrichment influences litter decomposition. Plant Soil 410(1–2):467–481

    Article  CAS  Google Scholar 

  • Behtari B, Jafarian Z, Alikhani H (2019) Temperature sensitivity of soil organic matter decomposition in response to land management in semiarid rangelands of Iran. CATENA 179:210–219

    Article  CAS  Google Scholar 

  • Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol Biochem 42(8):1275–1283

    Article  CAS  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature 396(6711):570–572

    Article  CAS  Google Scholar 

  • Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31(13):1889–1891

    Article  CAS  Google Scholar 

  • Burns RG, Dick RP (2002) [Burns,_Richard_G.]_Enzymes_in_the_Environment_Ac(BookZZ.org)

  • Burns RG, DeForest JL, Marxsen J et al (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  • Cai A, Liang G, Zhang X, Zhang W, Li L, Rui Y, Xu M, Luo Y (2018) Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time. Sci Total Environ 636:699–708. https://doi.org/10.1016/j.scitotenv.2018.04.303

    Article  CAS  Google Scholar 

  • Chen Y, Wen Y, Zhou Q, Vymazal J (2014) Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment. Water Res 63:158–167. https://doi.org/10.1016/j.watres.2014.06.015

    Article  CAS  Google Scholar 

  • Chen B, Liu E, Tian Q (2015) Soil nitrogen dynamics and crop residues. A review. Agron Sustain Dev 34:429–442. https://doi.org/10.1007/s13593-014-0207-8

    Article  CAS  Google Scholar 

  • Chen X, Wang G, Zhang T, Mao T, Wei D, Hu Z, Song C (2017a) Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmos Environ 157:111–124. https://doi.org/10.1016/j.atmosenv.2017.03.024

    Article  CAS  Google Scholar 

  • Chen Z, Xu Y, Fan J, Yu H, Ding W (2017b) Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China. Soil Biol Biochem 110:103–115. https://doi.org/10.1016/j.soilbio.2017.03.011

    Article  CAS  Google Scholar 

  • Chen L, Liu L, Qin S, Yang G, Fang K, Zhu B, Kuzyakov Y, Chen P, Xu Y, Yang Y (2019) Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-13119-z

    Article  CAS  Google Scholar 

  • Cheng Y, Cai Z, Zhang J, Chang SX (2011) Gross N transformations were little affected by 4 years of simulated N and S depositions in an aspen-white spruce dominated boreal forest in Alberta, Canada. For Ecol Manag 262:571–578. https://doi.org/10.1016/j.foreco.2011.04.027

    Article  Google Scholar 

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JÅM, Bradford MA (2011) Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Glob Chang Biol 17(11):3392–3404

    Article  Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113. https://doi.org/10.1890/06-1847.1

    Article  Google Scholar 

  • Cusack D, Margarets T, Mc Dowell WH, WL. (2010) The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob Chang Biol 16:2555–2572

    Google Scholar 

  • Daniel RM, Danson MJ (2010) A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochem Sci 35:584–591. https://doi.org/10.1016/j.tibs.2010.05.001

    Article  CAS  Google Scholar 

  • Das SK, Varma A (2010) Soil enzymology. Springer Berlin Heidelberg

  • Das R, Purakayastha TJ, Das D, Ahmed N, Kumar R, Biswas S, Walia SS, Singh R, Shukla VK, Yadava MS, Ravisankar N, Datta SC (2019) Long-term fertilization and manuring with different organics alter stability of carbon in colloidal organo-mineral fraction in soils of varying clay mineralogy. Sci Total Environ 684:682–693. https://doi.org/10.1016/j.scitotenv.2019.05.327

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    Article  CAS  Google Scholar 

  • De Troyer I, Amery F, Van Moorleghem C et al (2011) Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study. Soil Biol Biochem 43:513–519. https://doi.org/10.1016/j.soilbio.2010.11.016

    Article  CAS  Google Scholar 

  • Deans JR, Molina JAE, Clapp CE (1986) Models for predicting potentially mineralizable nitrogen and decomposition rate constants. Soil Sci Soc Am J 50:323–326. https://doi.org/10.2136/sssaj1986.03615995005000020014x

    Article  CAS  Google Scholar 

  • Dilly O (2001) Metabolic and anabolic responses of arable and forest soils to nutrient addition. J Plant Nutr Soil Sci 164:29–34. https://doi.org/10.1002/1522-2624(200102)164:1<29::AID-JPLN29>3.0.CO;2-0

    Article  CAS  Google Scholar 

  • Ding W, Yu H, Cai Z, Han F, Xu Z (2010) Responses of soil respiration to N fertilization in a loamy soil under maize cultivation. Geoderma 155:381–389. https://doi.org/10.1016/j.geoderma.2009.12.023

    Article  CAS  Google Scholar 

  • Dondini M, Abdalla M, Aini FK, et al (2018) Projecting soil C under future climate and land-use scenarios (modeling). Elsevier Inc.

  • Fang Y, Singh BP, Matta P, Cowie AL, Van Zwieten L (2017) Temperature sensitivity and priming of organic matter with different stabilities in a vertisol with aged biochar. Soil Biol Biochem 115:346–356

    Article  CAS  Google Scholar 

  • Fang Y, Singh BP, Collins D, Li B, Zhu J, Tavakkoli E (2018) Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biol Biochem 126:168–178. https://doi.org/10.1016/j.soilbio.2018.09.003

    Article  CAS  Google Scholar 

  • Fang Y, Singh BP, Cowie A, Wang W, Arachchi MH, Wang H, Tavakkoli E (2019) Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions. Geoderma 354:113883. https://doi.org/10.1016/j.geoderma.2019.113883

    Article  CAS  Google Scholar 

  • Fissore C, Giardina CP, Kolka RK, Trettin CC (2009) Soil organic carbon quality in forested mineral wetlands at different mean annual temperature. Soil Biol Biochem 41:458–466. https://doi.org/10.1016/j.soilbio.2008.11.004

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087

    Article  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96. https://doi.org/10.1016/j.soilbio.2010.09.017

    Article  CAS  Google Scholar 

  • Ghafoor A, Poeplau C, Kätterer T (2017) Fate of straw- and root-derived carbon in a Swedish agricultural soil. Biol Fertil Soils 53:257–267. https://doi.org/10.1007/s00374-016-1168-7

    Article  CAS  Google Scholar 

  • Ghosh A, Ranjan B, Dwivedi BS, Meena MC, Agarwal BK, Mahapatra P, Shahi DK, Salwani R, Agnihorti R (2016) Temperature sensitivity of soil organic carbon decomposition as affected by long-term fertilization under a soybean based cropping system in a sub-tropical Alfisol. Agric Ecosyst Environ 233:202–213

    Article  CAS  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rate of organic carbon in mineral soil do not vary with temperature. Nature 408:858–861

    Article  Google Scholar 

  • Gillis JD, Price GW (2016) Linking short-term soil carbon and nitrogen dynamics: environmental and stoichiometric controls on fresh organic matter decomposition in agroecosystems. Geoderma 274:35–44. https://doi.org/10.1016/j.geoderma.2016.03.026

    Article  CAS  Google Scholar 

  • Gregorich EG, Kachanoski RG, Voroney RP (1989) Carbon mineralization in soil size fractions after various amounts of aggregate disruption. J Soil Sci 40:649–659. https://doi.org/10.1111/j.1365-2389.1989.tb01306.x

    Article  CAS  Google Scholar 

  • Griepentrog M, Bodé S, Boeckx P, Hagedorn F, Heim A, Schmidt MWI (2014) Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Glob Chang Biol 20:327–340. https://doi.org/10.1111/gcb.12374

    Article  Google Scholar 

  • Guo H, Ye C, Zhang H, Pan S, Ji Y, Li Z, Liu M, Zhou X, du G, Hu F, Hu S (2017) Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biol Biochem 113:26–34. https://doi.org/10.1016/j.soilbio.2017.05.024

    Article  CAS  Google Scholar 

  • Guttières R, Nunan N, Raynaud X, Lacroix G, Barot S, Barré P, Girardin C, Guenet B, Lata JC, Abbadie L (2021) Temperature and soil management effects on carbon fluxes and priming effect intensity. Soil Biol Biochem 153:108103. https://doi.org/10.1016/j.soilbio.2020.108103

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Jørgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–763. https://doi.org/10.1111/j.1365-2745.2010.01671.x

    Article  CAS  Google Scholar 

  • Hu Y, Zhang L, Deng B, Liu Y, Liu Q, Zheng X, Zheng L, Kong F, Guo X, Siemann E (2017) The non-additive effects of temperature and nitrogen deposition on CO2 emissions, nitrification, and nitrogen mineralization in soils mixed with termite nests. Catena 154:12–20. https://doi.org/10.1016/j.catena.2017.02.014

    Article  CAS  Google Scholar 

  • Jackson CR, Tyler HL, Millar JJ (2013) Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. J Vis Exp:1–9. https://doi.org/10.3791/50399

  • Jeewani PH, Gunina A, Tao L, Zhu Z, Kuzyakov Y, van Zwieten L, Guggenberger G, Shen C, Yu G, Singh BP, Pan S, Luo Y, Xu J (2020) Rusty sink of rhizodeposits and associated keystone microbiomes. Soil Biol Biochem 147:107840. https://doi.org/10.1016/j.soilbio.2020.107840

    Article  CAS  Google Scholar 

  • Jiang X, Cao L, Zhang R (2014) Changes of labile and recalcitrant carbon pools under nitrogen addition in a city lawn soil. J Soils Sediments 14:515–524. https://doi.org/10.1007/s11368-013-0822-z

    Article  CAS  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms13630

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ, Passioura JB, Batten GD, Blanchard C, Kirkegaard JA (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409. https://doi.org/10.1016/j.soilbio.2013.09.032

    Article  CAS  Google Scholar 

  • Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Glob Biogeochem Cycles 21(4): n/a-n/a

  • Kumar M, Kundu DK, Ghorai AK, Mitra S, Singh SR (2018) Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic Plain. Soil Tillage Res 178:108–117. https://doi.org/10.1016/j.still.2017.12.025

    Article  Google Scholar 

  • Kuzyakov Y (2011) How to link soil C pools with CO2 fluxes? Biogeosciences 8:1523–1537. https://doi.org/10.5194/bg-8-1523-2011

    Article  CAS  Google Scholar 

  • Lavoie M, Mack MC, Schuur EAG (2011) Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaska arctic and boreal soils. J Geophys Res 116:130–137

    Google Scholar 

  • Leifeld J, von Lützow M (2014) Chemical and microbial activation energies of soil organic matter decomposition. Biol Fertil Soils 50(1):147–153

    Article  CAS  Google Scholar 

  • Leirós MC, Trasar-Cepeda C, Seoane S, Gil-Sotres F (1999) Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol Biochem 31(3):327–335. https://doi.org/10.1016/S0038-0717(98)00129-1

    Article  Google Scholar 

  • Li YF, Zhang JJ, Scott X, Chang, Jiang PK, Zhou GM, Fu SL, Yan ER, Wu JS, Lin L (2013) Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. Forest Ecol Manag 303:121–131

    Article  Google Scholar 

  • Li YC, Li YF, Chang SX, Yang YF, Fu SL, Jiang PK, Luo Y, Yang M, Chen ZH, Hu SD, Zhao MX, Liang X, Xu QF, Zhou GM, Zhou JZ (2018) Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol Biochem 122:173–185

    Article  CAS  Google Scholar 

  • Lin ZW, Li YF, Tang CX, Luo Y, Fu WJ, Cai XQ, Li YC, Yue T, Jiang PK, Hu SD, Chang SX (2018) Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biol Fertil Soils 54:467–480

    Article  CAS  Google Scholar 

  • Liu Y, Zang H, Ge T, Bai J, Lu S, Zhou P, Peng P, Shibistova O, Zhu Z, Wu J, Guggenberger G (2018) Intensive fertilization (N, P, K, ca, and S) decreases organic matter decomposition in paddy soil. Appl Soil Ecol 127:51–57

    Article  Google Scholar 

  • Liu HY, Ding Y, Zhang QC, Liu XM, Xu JM, Li Y, Di HJ (2019a) Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil 445(1-2):39–53

    Article  CAS  Google Scholar 

  • Liu H, Wu Y, Ai Z, Zhang J, Zhang C, Xue S, Liu G (2019b) Effects of the interaction between temperature and revegetation on the microbial degradation of soil dissolved organic matter (DOM) – a DOM incubation experiment. Geoderma 337:812–824. https://doi.org/10.1016/j.geoderma.2018.10.041

    Article  CAS  Google Scholar 

  • Liu H, Hu H, Huang X, Ge T, Li Y, Zhu Z, Liu X, Tan W, Jia Z, Di H, Xu J, Li Y (2021) Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils. Soil Biol Biochem 156:108192

    Article  CAS  Google Scholar 

  • Lu XH, Li YF, Wang HL, Singh BP, Hu SD, Luo Y, Li JW, Xiao YH, Cai XQ, Li YC (2019) Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agric For Meteorol 271:168–179

    Article  Google Scholar 

  • Luo Y, Durenkamp M, De Nobili M et al (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314. https://doi.org/10.1016/j.soilbio.2011.07.020

    Article  CAS  Google Scholar 

  • Luo L, Meng H, Wu R, Gu J (2017a) Impact of nitrogen pollution/deposition on extracellular enzyme activity, microbial abundance and carbon storage in coastal mangrove sediment. Chemosphere 177:275–283. https://doi.org/10.1016/j.chemosphere.2017.03.027

    Article  CAS  Google Scholar 

  • Luo Y, Zang H, Yu Z, Chen Z, Gunina A, Kuzyakov Y, Xu J, Zhang K, Brookes PC (2017b) Priming effects in biochar enriched soils using a three-source-partitioning approach:14C labelling and13C natural abundance. Soil Biol Biochem 106:28–35. https://doi.org/10.1016/j.soilbio.2016.12.006

    Article  CAS  Google Scholar 

  • Megan Steinweg J, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF, Jun N (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Meng F, Dungait JAJ, Xu X, Bol R, Zhang X, Wu W (2017) Coupled incorporation of maize (Zea mays L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol. Geoderma 304:19–27. https://doi.org/10.1016/j.geoderma.2016.09.010

    Article  CAS  Google Scholar 

  • Milcu A, Heim A, Ellis RJ, Scheu S, Manning P (2011) Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems 14:710–719. https://doi.org/10.1007/s10021-011-9440-z

    Article  CAS  Google Scholar 

  • Mincheva T, Barni E, Varese GC, Brusa G, Cerabolini B, Siniscalco C (2014) Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation. Acta Oecol 54:29–35

    Article  Google Scholar 

  • Moinet GYK, Moinet M, Hunt JE, Rumpel C, Chabbi A, Millard P (2020) Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci Total Environ 704:135460. https://doi.org/10.1016/j.scitotenv.2019.135460

    Article  CAS  Google Scholar 

  • Moreno-Cornejo J, Zornoza R, Faz A (2014) Carbon and nitrogen mineralization during decomposition of crop residues in a calcareous soil. Geoderma 230-231:58–63

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x

    Article  CAS  Google Scholar 

  • Paul EA (2015) Soil microbiology, ecology and biochemistry, 3rd Edn. Elsevier Ltd

  • Poeplau C, Kätterer T, Bolinder MA, Börjesson G, Berti A, Lugato E (2015) Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments. Geoderma 237:246–255. https://doi.org/10.1016/j.geoderma.2014.09.010

    Article  CAS  Google Scholar 

  • Poeplau C, Herrmann AM, Thomas K (2016) Opposing effects of nitrogen and phosphorus on soil microbial metabolism and the implications for soil carbon storage. Soil Biol Biochem 100:83–91. https://doi.org/10.1016/j.soilbio.2016.05.021

    Article  CAS  Google Scholar 

  • Qiu Q, Wu L, Ouyang Z, Li B, Xu Y, Wu S, Gregorich EG (2016) Priming effect of maize residue and urea N on soil organic matter changes with time. Appl Soil Ecol 100:65–74. https://doi.org/10.1016/j.apsoil.2015.11.016

    Article  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x

    Article  Google Scholar 

  • Razavi BS, Blagodatskaya E, Kuzyakov Y (2016) Temperature selects for static soil enzyme systems to maintain high catalytic efficiency. Soil Biol Biochem 97:15–22. https://doi.org/10.1016/j.soilbio.2016.02.018

    Article  CAS  Google Scholar 

  • Reed DC, Slomp CP, De Lange GJ (2011) A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene. Geochim Cosmochim Acta 75:5540–5558. https://doi.org/10.1016/j.gca.2011.07.002

    Article  CAS  Google Scholar 

  • Sarker JR, Singh BP, Fang Y, Cowie AL, Dougherty WJ, Collins D, Dalal RC, Singh BK (2019) Tillage history and crop residue input enhanced native carbon mineralisation and nutrient supply in contrasting soils under long-term farming systems. Soil Tillage Res 193:71–84. https://doi.org/10.1016/j.still.2019.05.027

    Article  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563. https://doi.org/10.1016/S0038-0717(03)00015-4

    Article  CAS  Google Scholar 

  • Sigua GC, Novak JM, Watts DW, Szögi AA, Shumaker PD (2016) Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered coastal plain Ultisols. Chemosphere 145:135–141

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Linkins AE (1990) Enzymic and chemical analysis of particulate organic matter from a boreal river. Freshw Biol 23:301–309. https://doi.org/10.1111/j.1365-2427.1990.tb00273.x

    Article  CAS  Google Scholar 

  • Song M, Jiang J, Cao G, Xu X (2010) Effects of temperature, glucose and inorganic nitrogen inputs on carbon mineralization in a Tibetan alpine meadow soil. Eur J Soil Biol 46:375–380. https://doi.org/10.1016/j.ejsobi.2010.09.003

    Article  CAS  Google Scholar 

  • Stanford G, Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am J 36:NP. https://doi.org/10.2136/sssaj1972.03615995003600030049x

    Article  Google Scholar 

  • Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD (2012) Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Glob Chang Biol 18:1173–1184. https://doi.org/10.1111/j.1365-2486.2011.02545.x

    Article  Google Scholar 

  • Stuble KL, Ma S, Liang J, Luo Y, Classen AT, Souza L (2019) Long-term impacts of warming drive decomposition and accelerate the turnover of labile, not recalcitrant, carbon. Ecosphere 10(5)

  • Tao B, Song C, Guo Y (2013) Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, Sanjiang Plain. Wetlands 33:727–736. https://doi.org/10.1007/s13157-013-0432-y

    Article  Google Scholar 

  • Tao B, Wang Y, Yu Y, Li Q, Luo C, Zhang B (2018) Interactive effects of nitrogen forms and temperature on soil organic carbon decomposition in the coastal wetland of the Yellow River Delta, China. Catena 165:408–413. https://doi.org/10.1016/j.catena.2018.02.025

    Article  CAS  Google Scholar 

  • Thiessen S, Gleixner G, Wutzler T, Reichstein M (2013) Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass – an incubation study. Soil Biol Biochem 57:739–748

    Article  CAS  Google Scholar 

  • Tinsley J, Tylor TGMJ (1951) The determination of carbondioxide derived from carbonates in agricultural and biological materials. Analyst 76:300–310

    Article  CAS  Google Scholar 

  • Uchida Y, Hunt JE, Barbour MM, Clough TJ, Kelliher FM, Sherlock RR (2010) Soil properties and presence of plants affect the temperature sensitivity of carbon dioxide production by soils. Plant Soil 337(1–2):375–387

    Article  CAS  Google Scholar 

  • Vicca S, Janssens IA, Wong S-C, Cernusak LA, Farquhar GD (2010) Zea mays rhizosphere respiration, but not soil organic matter decomposition was stable across a temperature gradient. Soil Biol Biochem 42(11):2030–2033

    Article  CAS  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ludwig B et al (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124. https://doi.org/10.1002/jpln.200700047

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Wang R, Dijkstra FA, Liu H, Yin J, Wang X, Feng X, Xu Z, Jiang Y (2019a) Response of soil carbon to nitrogen and water addition differs between labile and recalcitrant fractions: evidence from multi–year data and different soil depths in a semi-arid steppe. Catena 172:857–865. https://doi.org/10.1016/j.catena.2018.08.034

    Article  CAS  Google Scholar 

  • Wang D, Zhu Z, Shahbaz M, Chen L, Liu S, Inubushi K, Wu J, Ge T (2019b) Split N and P addition decreases straw mineralization and its priming effect in the paddy soil ecosystem: a 100-day incubation experiment. Biol Fertil Soils 55:701–712. https://doi.org/10.1007/s00374-019-01395-2

    Article  CAS  Google Scholar 

  • Wei L, Razavi B, Wang W et al (2019) Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biol Biochem 135:134–143. https://doi.org/10.1016/j.soilbio.2019.04.016

    Article  CAS  Google Scholar 

  • Wei X, Zhu Z, Liu Y et al (2020) C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biol Fertil Soils 56:1093–1107. https://doi.org/10.1007/s00374-020-01468-7

    Article  CAS  Google Scholar 

  • Wei L, Zhu Z, Liu S et al (2021) Temperature sensitivity (Q10) of stable, primed and easily available organic matter pools during decomposition in paddy soil. Appl Soil Ecol 157:103752. https://doi.org/10.1016/j.apsoil.2020.103752

    Article  Google Scholar 

  • Xu Y, Fan J, Ding W, Gunina A, Chen Z, Bol R, Luo J, Bolan N (2017) Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: Links to microbial community composition and activity. Geoderma 286:116–124. https://doi.org/10.1016/j.geoderma.2016.10.032

    Article  CAS  Google Scholar 

  • Xu X, An T, Zhang J, Sun Z, Schaeffer S, Wang J (2019) Transformation and stabilization of straw residue carbon in soil affected by soil types, maize straw addition and fertilized levels of soil. Geoderma 337:622–629. https://doi.org/10.1016/j.geoderma.2018.08.018

    Article  CAS  Google Scholar 

  • Xu X, Liu Y, Singh BP, Yang Q, Zhang Q, Wang H, Xia Z, Di H, Singh BK, Xu J, Li Y (2020) NosZ clade II rather than clade I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol Biochem 150:107974

    Article  CAS  Google Scholar 

  • Xun W, Zhao J, Xue C, Zhang G, Ran W, Wang B, Shen Q, Zhang R (2016) Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environ Microbiol 18:1907–1917. https://doi.org/10.1111/1462-2920.13098

    Article  CAS  Google Scholar 

  • Yu Z, Chen L, Pan S, Li Y, Kuzyakov Y, Xu J, Brookes PC, Luo Y (2018) Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms. Eur J Soil Sci 69:521–534. https://doi.org/10.1111/ejss.12542

    Article  CAS  Google Scholar 

  • Zhao C, Long J, Liao H, Zheng C, Li J, Liu L, Zhang M (2019) Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, Southwest China. Sci Rep 9(1)

  • Zhu Z, Ge T, Luo Y, Liu S, Xu X, Tong C, Shibistova O, Guggenberger G, Wu J (2018) Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol Biochem 121:67–76. https://doi.org/10.1016/j.soilbio.2018.03.003

    Article  CAS  Google Scholar 

Download references

Funding

This research was financed by the Zhejiang Outstanding Youth Fund (R19D010005) and the National Natural Science Foundation of China (U1901601, 41877038). The China Scholarship Council sponsored the graduate study under the Ministry of Education of the People’s Republic of China (2018GXZ023303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Luo.

Additional information

Responsible editor: Weixin Ding

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 4362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auwal, M., Singh, B.P., Chen, Z. et al. Nutrients addition regulates temperature sensitivity of maize straw mineralization. J Soils Sediments 21, 2778–2790 (2021). https://doi.org/10.1007/s11368-021-02960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-021-02960-9

Keywords

Navigation