Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mantle plumes and their role in Earth processes

Abstract

The existence of mantle plumes was first proposed in the 1970s to explain intra-plate, hotspot volcanism, yet owing to difficulties in resolving mantle upwellings with geophysical images and discrepancies in interpretations of geochemical and geochronological data, the origin, dynamics and composition of plumes and their links to plate tectonics are still contested. In this Review, we discuss progress in seismic imaging, mantle flow modelling, plate tectonic reconstructions and geochemical analyses that have led to a more detailed understanding of mantle plumes. Observations suggest plumes could be both thermal and chemical in nature, can attain complex and broad shapes, and that more than 18 plumes might be rooted in regions of the lowermost mantle. The case for a deep mantle origin is strengthened by the geochemistry of hotspot volcanoes that provide evidence for entrainment of deeply recycled subducted components, primordial mantle domains and, potentially, materials from Earth’s core. Deep mantle plumes often appear deflected by large-scale mantle flow, resulting in hotspot motions required to resolve past tectonic plate motions. Future research requires improvements in resolution of seismic tomography to better visualize deep mantle plume structures at smaller than 100-km scales. Concerted multi-proxy geochemical and dating efforts are also needed to better resolve spatiotemporal and chemical evolutions of long-lived mantle plumes.

Key points

  • Thermochemical mantle plumes are an integral part of Earth’s dynamic interior.

  • More than 18 mantle plumes appear to originate from the deepest regions in Earth’s mantle.

  • Mantle plumes influence surface processes, including continental break-up and mass extinctions.

  • The location of two large low-seismic-velocity provinces in the lowermost mantle can be associated with most present-day hotspots and ancient large igneous provinces.

  • Individual plume motions are required to resolve changes in absolute plate tectonic motions.

  • Mantle plumes are geochemically heterogeneous, incorporating deeply recycled subducted components, primordial mantle domains and, potentially, materials from Earth’s core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic nature of Earth’s interior.
Fig. 2: Tomographic imaging of mantle plumes and LLSVPs.
Fig. 3: Examples of rising thermal and thermochemical plumes.
Fig. 4: Isotope systematics in global plume volcanics.
Fig. 5: Isotopic zonation of the Hawaiian plume.

Similar content being viewed by others

References

  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Google Scholar 

  2. Wilson, J. T. A possible origin of the Hawaiian Islands. Can. J. Phys. 41, 863–870 (1963).

    Google Scholar 

  3. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Google Scholar 

  4. Whitehead, J. A. & Luther, D. S. Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80, 705–717 (1975).

    Google Scholar 

  5. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic-crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Google Scholar 

  6. White, W. M. & Hofmann, A. W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825 (1982).

    Google Scholar 

  7. Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Google Scholar 

  8. Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004).

    Google Scholar 

  9. Boschi, L., Becker, T. W. & Steinberger, B. Mantle plumes: Dynamic models and seismic images. Geochem. Geophys. Geosyst. 8, Q10006 (2007).

    Google Scholar 

  10. Tan, E., Leng, W., Zhong, S. J. & Gurnis, M. On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochem. Geophys. Geosyst. 12, Q07005 (2011).

    Google Scholar 

  11. Steinberger, B. & Torsvik, T. H. A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochem. Geophys. Geosyst. 13, Q01W09 (2012).

    Google Scholar 

  12. Davies, D. R., Goes, S. & Sambridge, M. On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth Planet. Sci. Lett. 411, 121–130 (2015).

    Google Scholar 

  13. Hassan, R., Flament, N., Gurnis, M., Bower, D. J. & Muller, D. Provenance of plumes in global convection models. Geochem. Geophys. Geosyst. 16, 1465–1489 (2015).

    Google Scholar 

  14. Austermann, J., Kaye, B. T., Mitrovica, J. X. & Huybers, P. A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophys. J. Int. 197, 1–9 (2014).

    Google Scholar 

  15. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).

    Google Scholar 

  16. Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, 2001).

  17. Courtier, A. M., Bagley, B. & Revenaugh, J. Whole mantle discontinuity structure beneath Hawaii. Geophys. Res. Lett. 34, L17304 (2007).

    Google Scholar 

  18. Putirka, K. Excess temperatures at ocean islands: Implications for mantle layering and convection. Geology 36, 283–286 (2008).

    Google Scholar 

  19. Trela, J. et al. The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nat. Geosci. 10, 451–45 (2017).

    Google Scholar 

  20. Moore, W. B., Schubert, G. & Tackley, P. Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell. Science 279, 1008–1011 (1998).

    Google Scholar 

  21. Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999).

    Google Scholar 

  22. Ballmer, M. D., Ito, G., van Hunen, J. & Tackley, P. J. Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection. Nat. Geosci. 4, 457–460 (2011).

    Google Scholar 

  23. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999).

    Google Scholar 

  24. Davaille, A., Girard, F. & Le Bars, M. How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett. 203, 621–634 (2002).

    Google Scholar 

  25. Jellinek, A. M. & Manga, M. Links between long-lived hot spots, mantle plumes, D″, and plate tectonics. Rev. Geophys. 42, RG3002 (2004).

    Google Scholar 

  26. Olson, P. & Yuen, D. A. Thermochemical plumes and mantle phase-transitions. J. Geophys. Res. 87, 3993–4002 (1982).

    Google Scholar 

  27. Campbell, I. H., Griffiths, R. W. & Hill, R. I. Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339, 697–699 (1989).

    Google Scholar 

  28. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Google Scholar 

  29. Allègre, C. J., Staudacher, T., Sarda, P. & Kurz, M. Constraints on evolution of Earth’s mantle from rare gas systematics. Nature 303, 762–766 (1983).

    Google Scholar 

  30. Koppers, A. A. P. & Watts, A. B. Intraplate seamounts as a window into deep Earth processes. Oceanography 23, 42–57 (2010).

    Google Scholar 

  31. van der Meer, D. G., van Hinsbergen, D. J. J. & Spakman, W. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309–448 (2018).

    Google Scholar 

  32. Ricard, Y., Richards, M., Lithgowbertelloni, C. & Lestunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. Solid Earth 98, 21895–21909 (1993).

    Google Scholar 

  33. Lithgow-Bertelloni, C. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78 (1998).

    Google Scholar 

  34. Mulyukova, E., Steinberger, B., Dabrowski, M. & Sobolev, S. V. Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly. J. Geophys. Res. Solid Earth 120, 3824–3847 (2015).

    Google Scholar 

  35. Domeier, M., Doubrovine, P. V., Torsvik, T. H., Spakman, W. & Bull, A. L. Global correlation of lower mantle structure and past subduction. Geophys. Res. Lett. 43, 4945–4953 (2016).

    Google Scholar 

  36. Dziewonski, A. M. & Woodhouse, J. H. Global images of the Earth’s interior. Science 236, 37–48 (1987).

    Google Scholar 

  37. Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Google Scholar 

  38. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. High resolution global tomography: a snapshot of convection in the Earth. GSA Today 7 (1997).

  39. Li, X. D. & Romanowicz, B. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. Solid Earth 101, 22245–22272 (1996).

    Google Scholar 

  40. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. Geophys. Monogr. Ser. 117, 63–87 (2000).

    Google Scholar 

  41. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Google Scholar 

  42. Su, W. J. & Dziewonski, A. M. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. 100, 135–156 (1997).

    Google Scholar 

  43. Li, M. M. & Zhong, S. J. The source location of mantle plumes from 3D spherical models of mantle convection. Earth Planet. Sci. Lett. 478, 47–57 (2017).

    Google Scholar 

  44. Tan, E., Gurnis, M. & Han, L. J. Slabs in the lower mantle and their modulation of plume formation. Geochem. Geophys. Geosyst. 3, 1–24 (2002).

    Google Scholar 

  45. Allègre, C. J. Chemical geodynamics. Tectonophysics 81, 109–132 (1982).

    Google Scholar 

  46. Hart, S. R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett. 90, 273–296 (1988).

    Google Scholar 

  47. Stracke, A. Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem. Geol. 330, 274–299 (2012).

    Google Scholar 

  48. Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. On causal links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 166, 177–195 (1999).

    Google Scholar 

  49. Storey, B. C. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377, 301–308 (1995).

    Google Scholar 

  50. White, R. & Mckenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. Solid Earth 94, 7685–7729 (1989).

    Google Scholar 

  51. Zhang, N., Dang, Z., Huang, C. & Li, Z. X. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geosci. Front. 9, 997–1007 (2018).

    Google Scholar 

  52. Courtillot, V. & Fluteau, F. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects Vol. 505 (eds Keller, G. & Kerr, A. C.) 301–317 (Geological Society of America, 2014).

  53. Duncan, R. A. & Pyle, D. G. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature 333, 841–843 (1988).

    Google Scholar 

  54. Renne, P. R. et al. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–687 (2013).

    Google Scholar 

  55. Anderson, D. L. The persistent mantle plume myth. Aust. J. Earth Sci. 60, 657–673 (2013).

    Google Scholar 

  56. Anderson, D. L. & Natland, J. H. Mantle updrafts and mechanisms of oceanic volcanism. Proc. Natl Acad. Sci. USA 111, E4298–E4304 (2014).

    Google Scholar 

  57. Sleep, N. H. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res. Solid Earth 95, 6715–6736 (1990).

    Google Scholar 

  58. Sleep, N. H. Mantle plumes from top to bottom. Earth Sci. Rev. 77, 231–271 (2006).

    Google Scholar 

  59. van Keken, P. Evolution of starting mantle plumes: a comparison between numerical and laboratory models. Earth Planet. Sci. Lett. 148, 1–11 (1997).

    Google Scholar 

  60. Konrad, K. et al. On the relative motions of long-lived Pacific mantle plumes. Nat. Commun. 9, 854 (2018).

    Google Scholar 

  61. Koppers, A. A. P. Mantle plumes persevere. Nat. Geosci. 4, 816–817 (2011).

    Google Scholar 

  62. Steinberger, B. Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res. Solid Earth 105, 11127–11152 (2000).

    Google Scholar 

  63. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Google Scholar 

  64. Schubert, G., Masters, G., Olson, P. & Tackley, P. Superplumes or plume clusters? Phys. Earth Planet. Inter. 146, 147–162 (2004).

    Google Scholar 

  65. Sandwell, D. T. et al. Evidence for diffuse extension of the Pacific plate from Pukapuka ridges and cross-grain gravity lineations. J. Geophys. Res. Solid. Earth 100, 15087–15099 (1995).

    Google Scholar 

  66. Foulger, G. R. & Natland, J. H. Is “hotspot” volcanism a consequence of plate tectonics? Science 300, 921–922 (2003).

    Google Scholar 

  67. Foulger, G. R. Origin of the South Atlantic igneous province. J. Volcanol. Geotherm. Res. 355, 2–20 (2018).

    Google Scholar 

  68. Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

    Google Scholar 

  69. Lei, W. et al. Global adjoint tomography—model GLAD-M25. Geophys. J. Int. 223, 1–21 (2020).

    Google Scholar 

  70. Zhao, D. P. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146, 3–34 (2004).

    Google Scholar 

  71. Boschi, L., Becker, T. W. & Steinberger, B. On the statistical significance of correlations between synthetic mantle plumes and tomographic models. Phys. Earth Planet. Inter. 167, 230–238 (2008).

    Google Scholar 

  72. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Google Scholar 

  73. Nelson, P. L. & Grand, S. P. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nat. Geosci. 11, 280–28 (2018).

    Google Scholar 

  74. White, W. M. Oceanic island basalts and mantle plumes: the geochemical perspective. Annu. Rev. Earth Planet. Sci. 38, 133–160 (2010).

    Google Scholar 

  75. Jackson, M. G., Becker, T. W. & Konter, J. G. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: Implications for storage in the large low shear wave velocity provinces. Geochem. Geophys. Geosyst. 19, 3496–3519 (2018).

    Google Scholar 

  76. Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    Google Scholar 

  77. Dannberg, J. & Gassmoller, R. Chemical trends in ocean islands explained by plume–slab interaction. Proc. Natl Acad. Sci. USA 115, 4351–4356 (2018).

    Google Scholar 

  78. Farnetani, C. G. & Hofmann, A. W. Dynamics and internal structure of the Hawaiian plume. Earth Planet. Sci. Lett. 295, 231–240 (2010).

    Google Scholar 

  79. Hoernle, K. et al. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nat. Commun. 6, 7799 (2015).

    Google Scholar 

  80. Hofmann, A. W. & Farnetani, C. G. Two views of Hawaiian plume structure. Geochem. Geophys. Geosyst. 14, 5308–5322 (2013).

    Google Scholar 

  81. Huang, S. C., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat. Geosci. 4, 874–878 (2011).

    Google Scholar 

  82. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat. Geosci. 4, 831–838 (2011).

    Google Scholar 

  83. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Google Scholar 

  84. Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source. Nature 555, 89–93 (2018).

    Google Scholar 

  85. Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    Google Scholar 

  86. Rizo, H. et al. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).

    Google Scholar 

  87. Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Google Scholar 

  88. Dziewonski, A. M., Hager, B. H. & O’Connell, R. J. Large-scale heterogeneities in the lower mantle. J. Geophys. Res. 82, 239–255 (1977).

    Google Scholar 

  89. Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541–546 (1985).

    Google Scholar 

  90. Davies, G. F. Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots. J. Geophys. Res. Solid Earth 93, 10467–10480 (1988).

    Google Scholar 

  91. Richards, M. A., Hager, B. H. & Sleep, N. H. Dynamically supported geoid highs over hotspots: Observation and theory. J. Geophys. Res. Solid Earth 93, 7690–7708 (1988).

    Google Scholar 

  92. Larson, R. L. Geological consequences of superplumes. Geology 19, 963–966 (1991).

    Google Scholar 

  93. Larson, R. L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology 19, 547–550 (1991).

    Google Scholar 

  94. McNutt, M. K. Superswells. Rev. Geophys. 36, 211–244 (1998).

    Google Scholar 

  95. Anderson, D. L. Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297, 391–393 (1982).

    Google Scholar 

  96. Richards, M. A. & Engebretson, D. C. Large-scale mantle convection and the history of subduction. Nature 355, 437–440 (1992).

    Google Scholar 

  97. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Google Scholar 

  98. Ritsema, J. & Lekić, V. Heterogeneity of seismic wave velocity in Earth’s mantle. Annu. Rev. Earth Planet. Sci. 48, 377–401 (2020).

    Google Scholar 

  99. Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3, 2001GC000168 (2002).

    Google Scholar 

  100. Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68–77 (2012).

    Google Scholar 

  101. Kennett, B. L. N., Widiyantoro, S. & van der Hilst, R. D. Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J. Geophys. Res. Solid Earth 103, 12469–12493 (1998).

    Google Scholar 

  102. Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349, 198–208 (2012).

    Google Scholar 

  103. Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science 296, 1850–1852 (2002).

    Google Scholar 

  104. Wang, Y. & Wen, L. X. Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth’s mantle. J. Geophys. Res. Solid Earth 109, B10305 (2004).

    Google Scholar 

  105. To, A., Romanowicz, B., Capdeville, Y. & Takeuchi, N. 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth Planet. Sci. Lett. 233, 137–153 (2005).

    Google Scholar 

  106. Davies, D. R. et al. Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353, 253–269 (2012).

    Google Scholar 

  107. Schuberth, B. S. A., Bunge, H. P. & Ritsema, J. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?. Geochem. Geophys. Geosyst. 10, Q05W03 (2009).

    Google Scholar 

  108. Ishii, M. & Tromp, J. Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Planet. Inter. 146, 113–124 (2004).

    Google Scholar 

  109. Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. Solid Earth 115, B12310 (2010).

    Google Scholar 

  110. Niu, Y. Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics – A petrological and geochemical perspective. Geosci. Front. 9, 1265–1278 (2018).

    Google Scholar 

  111. Ballmer, M. D., Schumacher, L., Lekic, V., Thomas, C. & Ito, G. Compositional layering within the large low shear-wave velocity provinces in the lower mantle. Geochem. Geophys. Geosyst. 17, 5056–5077 (2016).

    Google Scholar 

  112. Romanowicz, B. Can we resolve 3D density heterogeneity in the lower mantle? Geophys. Res. Lett. 28, 1107–1110 (2001).

    Google Scholar 

  113. Trampert, J., Deschamps, F., Resovsky, J. & Yuen, D. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856 (2004).

    Google Scholar 

  114. Akbarashrafi, F., Al-Attar, D., Deuss, A., Trampert, J. & Valentine, A. P. Exact free oscillation spectra, splitting functions and the resolvability of Earth’s density structure. Geophys. J. Int. 213, 58–76 (2018).

    Google Scholar 

  115. Lau, H. C. P. et al. Tidal tomography constrains Earth’s deep-mantle buoyancy. Nature 551, 321–326 (2017).

    Google Scholar 

  116. Koelemeijer, P., Deuss, A. & Ritsema, J. Density structure of Earth’s lowermost mantle from Stoneley mode splitting observations. Nat. Commun. 8, 15241 (2017).

    Google Scholar 

  117. McNamara, A. K. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics 760, 199–220 (2019).

    Google Scholar 

  118. Macpherson, C. G., Hilton, D. R., Sinton, J. M., Poreda, R. J. & Craig, H. High 3He/4He ratios in the Manus backarc basin: Implications for mantle mixing and the origin of plumes in the western Pacific Ocean. Geology 26, 1007–1010 (1998).

    Google Scholar 

  119. Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).

    Google Scholar 

  120. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Google Scholar 

  121. Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Google Scholar 

  122. McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Google Scholar 

  123. Davaille, A. & Romanowicz, B. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics 39, e2020TC006265 (2020).

    Google Scholar 

  124. Bull, A. L., Domeier, M. & Torsvik, T. H. The effect of plate motion history on the longevity of deep mantle heterogeneities. Earth Planet. Sci. Lett. 401, 172–182 (2014).

    Google Scholar 

  125. Zhang, N., Zhong, S. J., Leng, W. & Li, Z. X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. Solid Earth 115, B06401 (2010).

    Google Scholar 

  126. Heron, P. J. et al. Ancient subducted oceans controlling the positioning of deep mantle plumes. Preprint at EarthArXiv 10.31223/osf.io/vdmys (2019)..

  127. Frost, D. A. & Rost, S. The P-wave boundary of the large-low shear velocity province beneath the Pacific. Earth Planet. Sci. Lett. 403, 380–392 (2014).

    Google Scholar 

  128. Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227, 531–538 (2004).

    Google Scholar 

  129. Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006).

    Google Scholar 

  130. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Google Scholar 

  131. Cottaar, S. & Romanowicz, B. An unsually large ULVZ at the base of the mantle near Hawaii. Earth Planet. Sci. Lett. 355, 213–222 (2012).

    Google Scholar 

  132. Thorne, M. S., Garnero, E. J., Jahnke, G., Igel, H. & McNamara, A. K. Mega ultra low velocity zone and mantle flow. Earth Planet. Sci. Lett. 364, 59–67 (2013).

    Google Scholar 

  133. Yuan, K. Q. & Romanowicz, B. Seismic evidence for partial melting at the root of major hot spot plumes. Science 357, 393–396 (2017).

    Google Scholar 

  134. Kim, D., Lekic, V., Menard, B., Baron, D. & Taghizadeh-Popp, M. Sequencing seismograms: A panoptic view of scattering in the core-mantle boundary region. Science 368, 1223–1228 (2020).

    Google Scholar 

  135. Rost, S., Garnero, E. J., Williams, Q. & Manga, M. Seismological constraints on a possible plume root at the core–mantle boundary. Nature 435, 666–669 (2005).

    Google Scholar 

  136. Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth’s mantle. Science 273, 1528–1530 (1996).

    Google Scholar 

  137. Mao, W. L. et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science 312, 564–565 (2006).

    Google Scholar 

  138. Wicks, J. K., Jackson, J. M., Sturhahn, W. & Zhang, D. Z. Sound velocity and density of magnesiowustites: Implications for ultralow-velocity zone topography. Geophys. Res. Lett. 44, 2148–2158 (2017).

    Google Scholar 

  139. Olson, P. & Kincaid, C. Experiments on the interaction of thermal convection and compositional layering at the base of the mantle. J. Geophys. Res. Solid. Earth 96, 4347–4354 (1991).

    Google Scholar 

  140. Zhong, S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J. Geophys. Res. Solid Earth 111, B04409 (2006).

    Google Scholar 

  141. Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Google Scholar 

  142. Campbell, I. H. Testing the plume theory. Chem. Geol. 241, 153–176 (2007).

    Google Scholar 

  143. Albers, M. & Christensen, U. R. The excess temperature of plumes rising from the core-mantle boundary. Geophys. Res. Lett. 23, 3567–3570 (1996).

    Google Scholar 

  144. King, S. D. & Adam, C. Hotspot swells revisited. Phys. Earth Planet. Inter. 235, 66–83 (2014).

    Google Scholar 

  145. Davies, G. F. Temporal variation of the Hawaiian plume flux. Earth Planet. Sci. Lett. 113, 277–286 (1992).

    Google Scholar 

  146. Schilling, J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352, 397–403 (1991).

    Google Scholar 

  147. Ito, G., Lin, J. & Gable, C. W. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galapagos plume-ridge system. J. Geophys. Res. Solid Earth 102, 15403–15417 (1997).

    Google Scholar 

  148. Parnell-Turner, R. et al. A continuous 55-million-year record of transient mantle plume activity beneath Iceland. Nat. Geosci. 7, 914–919 (2014).

    Google Scholar 

  149. Steinberger, B., Spakman, W., Japsen, P. & Torsvik, T. H. The key role of global solid-Earth processes in preconditioning Greenland’s glaciation since the Pliocene. Terra Nova 27, 1–8 (2015).

    Google Scholar 

  150. Lin, S. C. & van Keken, P. E. Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer. Geochem. Geophys. Geosyst. 7, Q02006 (2006).

    Google Scholar 

  151. McNamara, A. K. & Zhong, S. J. Thermochemical structures within a spherical mantle: Superplumes or piles?. J. Geophys. Res. Solid Earth 109, B07402 (2004).

    Google Scholar 

  152. Farnetani, C. G. Excess temperature of mantle plumes: The role of chemical stratification across D″. Geophys. Res. Lett. 24, 1583–1586 (1997).

    Google Scholar 

  153. Farnetani, C. G. & Samuel, H. Beyond the thermal plume paradigm. Geophys. Res. Lett. 32, L07311 (2005).

    Google Scholar 

  154. Lin, S. C. & van Keken, P. E. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem. Geophys. Geosyst. 7, Q03003 (2006).

    Google Scholar 

  155. Kumagai, I., Davaille, A., Kurita, K. & Stutzmann, E. Mantle plumes: Thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35, L16301 (2008).

    Google Scholar 

  156. Dannberg, J. & Sobolev, S. V. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept. Nat. Commun. 6, 6960 (2015).

    Google Scholar 

  157. Ballmer, M. D., Ito, G., Wolfe, C. J. & Solomon, S. C. Double layering of a thermochemical plume in the upper mantle beneath Hawaii. Earth Planet. Sci. Lett. 376, 155–164 (2013).

    Google Scholar 

  158. Larsen, T. B. & Yuen, D. A. Fast plumeheads: Temperature-dependent versus non-Newtonian rheology. Geophys. Res. Lett. 24, 1995–1998 (1997).

    Google Scholar 

  159. Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. USA 111, 8735–8740 (2014).

    Google Scholar 

  160. Steinberger, B., Nelson, P. L., Grand, S. P. & Wang, W. Yellowstone plume conduit tilt caused by large-scale mantle flow. Geochem. Geophys. Geosyst. 20, 5896–5912 (2019).

    Google Scholar 

  161. Butterworth, N. P. et al. Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs. J. Geodyn. 73, 1–13 (2014).

    Google Scholar 

  162. Steinberger, B., Torsvik, T. H. & Becker, T. W. Subduction to the lower mantle–a comparison between geodynamic and tomographic models. Solid. Earth 3, 415–432 (2012).

    Google Scholar 

  163. Steinberger, B. & O’Connell, R. J. Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int. 132, 412–434 (1998).

    Google Scholar 

  164. Richards, M. A. & Griffiths, R. W. Deflection of plumes by mantle shear flow: experimental results and a simple theory. Geophys. J. 94, 367–376 (1988).

    Google Scholar 

  165. Zhong, S. J., Zuber, M. T., Moresi, L. & Gurnis, M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. Solid Earth 105, 11063–11082 (2000).

    Google Scholar 

  166. Koppers, A. A. P. et al. Limited latitudinal mantle plume motion for the Louisville hotspot. Nat. Geosci. 5, 911–917 (2012).

    Google Scholar 

  167. Peate, D. W. in Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism Vol. 100 (eds Mahoney, J. J. & Coffin, M. F.) 217–245 (American Geophysical Union, 1997).

  168. Ernst, R. E. & Buchan, K. L. Recognizing mantle plumes in the geological record. Annu. Rev. Earth Planet. Sci. 31, 469–523 (2003).

    Google Scholar 

  169. Koppers, A. A. P., Morgan, J. P., Morgan, J. W. & Staudigel, H. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett. 185, 237–252 (2001).

    Google Scholar 

  170. Tejada, M. L. G. et al. Geochemistry and age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises. Geochim. Cosmochim. Acta 185, 302–327 (2016).

    Google Scholar 

  171. Koppers, A. A. P., Staudigel, H., Pringle, M. S. & Wijbrans, J. R. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?. Geochem. Geophys. Geosyst. 4, 1089 (2003).

    Google Scholar 

  172. Clouard, V. & Bonneville, A. How many Pacific hotspots are fed by deep-mantle plumes? Geology 29, 695–698 (2001).

    Google Scholar 

  173. Whitehead, J. A. Instabilities of fluid conduits in a flowing earth—are plates lubricated by the asthenosphere? Geophys. J. Int. 70, 415–433 (1982).

    Google Scholar 

  174. Bercovici, D. & Mahoney, J. Double flood basalts and plume head separation at the 660-kilometer discontinuity. Science 266, 1367–1369 (1994).

    Google Scholar 

  175. Niu, Y. L. et al. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement. Sci. Bull. 62, 1464–1472 (2017).

    Google Scholar 

  176. Wei, S. S., Shearer, P. M., Lithgow-Bertelloni, C., Stixrude, L. & Tian, D. Oceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle. Science 370, 983–987 (2020).

    Google Scholar 

  177. Steinberger, B. & Antretter, M. Conduit diameter and buoyant rising speed of mantle plumes: Implications for the motion of hot spots and shape of plume conduits. Geochem. Geophys. Geosyst. 7, Q11018 (2006).

    Google Scholar 

  178. Maguire, R., Ritsema, J., Bonnin, M., van Keken, P. E. & Goes, S. Evaluating the resolution of deep mantle plumes in teleseismic traveltime tomography. J. Geophys. Res. Solid Earth 123, 384–400 (2018).

    Google Scholar 

  179. Maguire, R., Ritsema, J., van Keken, P. E., Fichtner, A. & Goes, S. P- and S-wave delays caused by thermal plumes. Geophys. J. Int. 206, 1169–1178 (2016).

    Google Scholar 

  180. Ritsema, J. & Allen, R. M. The elusive mantle plume. Earth Planet. Sci. Lett. 207, 1–12 (2003).

    Google Scholar 

  181. Stockmann, F., Cobden, L., Deschamps, F., Fichtner, A. & Thomas, C. Investigating the seismic structure and visibility of dynamic plume models with seismic array methods. Geophys. J. Int. 219, S167–S194 (2019).

    Google Scholar 

  182. Nolet, G., Dahlen, F. & Montelli, R. Traveltimes and amplitudes of seismic waves: a re-assessment. Geophys. Monogr. Ser. 157, 37 (2005).

    Google Scholar 

  183. Bijwaard, H. & Spakman, W. Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett. 166, 121–126 (1999).

    Google Scholar 

  184. Zhao, D. Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett. 192, 251–265 (2001).

    Google Scholar 

  185. Wolfe, C. J., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

    Google Scholar 

  186. Allen, R. M. et al. Plume-driven plumbing and crustal formation in Iceland. J. Geophys. Res. Solid Earth 107, ESE 4-1–ESE 4-19 (2002).

    Google Scholar 

  187. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004).

    Google Scholar 

  188. Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326, 1388–1390 (2009).

    Google Scholar 

  189. Davaille, A., Carrez, P. & Cordier, P. Fat plumes may reflect the complex rheology of the lower mantle. Geophys. Res. Lett. 45, 1349–1354 (2018).

    Google Scholar 

  190. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).

    Google Scholar 

  191. Rudolph, M. L., Lekic, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).

    Google Scholar 

  192. Boschi, L. & Becker, T. W. Vertical coherence in mantle heterogeneity from global seismic data. Geophys. Res. Lett. 38, L20306 (2011).

    Google Scholar 

  193. King, S. D. & Masters, G. An inversion for radial viscosity structure using seismic tomography. Geophys. Res. Lett. 19, 1551–1554 (1992).

    Google Scholar 

  194. Mitrovica, J. X. & Forte, A. M. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225, 177–189 (2004).

    Google Scholar 

  195. Jackson, M. G., Becker, T. W. & Steinberger, B. Spatial characteristics of recycled and primordial reservoirs in the deep mantle. Geochem. Geophys. Geosyst. 22, e2020GC009525 (2021).

    Google Scholar 

  196. Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).

    Google Scholar 

  197. Chang, S.-J., Kendall, E., Davaille, A. & Ferreira, A. M. G. The evolution of mantle plumes in East Africa. J. Geophys. Res. Solid Earth 125, e2020JB019929 (2020).

    Google Scholar 

  198. Halliday, A. N. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004).

    Google Scholar 

  199. Carlson, R. W. & Boyet, M. Short-lived radionuclides as monitors of early crust–mantle differentiation on the terrestrial planets. Earth Planet. Sci. Lett. 279, 147–156 (2009).

    Google Scholar 

  200. Horan, M. F. et al. Tracking Hadean processes in modern basalts with 142-Neodymium. Earth Planet. Sci. Lett. 484, 184–191 (2018).

    Google Scholar 

  201. Kruijer, T. S. & Kleine, T. No 182W excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).

    Google Scholar 

  202. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).

    Google Scholar 

  203. Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).

    Google Scholar 

  204. Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled 182W-142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17, 2168–2193 (2016).

    Google Scholar 

  205. Huang, S. C., Farkas, J. & Jacobsen, S. B. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim. Cosmochim. Acta 75, 4987–4997 (2011).

    Google Scholar 

  206. Eiler, J. M., Farley, K. A., Valley, J. W., Hofmann, A. W. & Stolper, E. M. Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett. 144, 453–467 (1996).

    Google Scholar 

  207. Cabral, R. A. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013).

    Google Scholar 

  208. Konter, J. G. et al. Unusual δ56Fe values in Samoan rejuvenated lavas generated in the mantle. Earth Planet. Sci. Lett. 450, 221–232 (2016).

    Google Scholar 

  209. Nebel, O. et al. Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes. Earth Planet. Sci. Lett. 521, 60–67 (2019).

    Google Scholar 

  210. Gleeson, M. L. M., Gibson, S. A. & Williams, H. M. Novel insights from Fe-isotopes into the lithological heterogeneity of Ocean Island Basalts and plume-influenced MORBs. Earth Planet. Sci. Lett. 535, 116114 (2020).

    Google Scholar 

  211. Harpp, K. S. & White, W. M. Tracing a mantle plume: Isotopic and trace element variations of Galapagos seamounts. Geochem. Geophys. Geosyst. 2, 2000GC000137 (2001).

    Google Scholar 

  212. Hoernle, K. et al. Existence of complex spatial zonation in the Galápagos plume. Geology 28, 435–438 (2000).

    Google Scholar 

  213. Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).

    Google Scholar 

  214. Hawkesworth, C. J., Norry, M. J., Roddick, J. C. & Vollmer, R. 143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle. Nature 280, 28–31 (1979).

    Google Scholar 

  215. Jackson, M. G. et al. The return of subducted continental crust in Samoan lavas. Nature 448, 684–687 (2007).

    Google Scholar 

  216. Chauvel, C., Hofmann, A. W. & Vidal, P. HIMU-EM: The French Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119 (1992).

    Google Scholar 

  217. Eisele, J. et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197–212 (2002).

    Google Scholar 

  218. Castillo, P. R. The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos 216, 254–263 (2015).

    Google Scholar 

  219. Niu, Y. L. & O’Hara, M. J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res. Solid Earth 108, 2209 (2003).

    Google Scholar 

  220. Pilet, S., Baker, M. B. & Stolper, E. M. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919 (2008).

    Google Scholar 

  221. Weiss, Y., Class, C., Goldstein, S. L. & Hanyu, T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 537, 666–670 (2016).

    Google Scholar 

  222. McKenzie, D. & O’Nions, R. K. The source regions of ocean island basalts. J. Petrol. 36, 133–159 (1995).

    Google Scholar 

  223. Collerson, K. D., Williams, Q., Ewart, A. E. & Murphy, D. T. Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: The role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys. Earth Planet. Inter. 181, 112–131 (2010).

    Google Scholar 

  224. Hauri, E. H. Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996).

    Google Scholar 

  225. Prytulak, J. & Elliott, T. TiO2 enrichment in ocean island basalts. Earth Planet. Sci. Lett. 263, 388–403 (2007).

    Google Scholar 

  226. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005).

    Google Scholar 

  227. Delavault, H., Chauvel, C., Thomassot, E., Devey, C. W. & Dazas, B. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc. Natl Acad. Sci. USA 113, 12952–12956 (2016).

    Google Scholar 

  228. Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002).

    Google Scholar 

  229. Gülcher, A. J. P., Gebhardt, D. J., Ballmer, M. D. & Tackley, P. J. Variable dynamic styles of primordial heterogeneity preservation in the Earth’s lower mantle. Earth Planet. Sci. Lett. 536, 116160 (2020).

    Google Scholar 

  230. Deschamps, F., Kaminski, E. & Tackley, P. J. A deep mantle origin for the primitive signature of ocean island basalt. Nat. Geosci. 4, 879–882 (2011).

    Google Scholar 

  231. Graham, D. W. et al. Mantle source provinces beneath the northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geotherm. Res. 188, 128–140 (2009).

    Google Scholar 

  232. Castillo, P. The dupal anomaly as a trace of the upwelling lower mantle. Nature 336, 667–670 (1988).

    Google Scholar 

  233. Jackson, M. G., Becker, T. W. & Konter, J. G. Evidence for a deep mantle source for EM and HIMU domains from integrated geochemical and geophysical constraints. Earth Planet. Sci. Lett. 484, 154–167 (2018).

    Google Scholar 

  234. Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984).

    Google Scholar 

  235. Hofmann, A. W. in Treatise on Geochemistry Vol. 2 (eds Holland, H. D. & Turekian, K. K.) 1–44 (Pergamon, 2007).

  236. Warren, J. M. Global variations in abyssal peridotite compositions. Lithos 248, 193–219 (2016).

    Google Scholar 

  237. Doucet, L. S. et al. Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology 48, 159–163 (2020).

    Google Scholar 

  238. Li, M., McNamara, A. K., Garnero, E. J. & Yu, S. Compositionally-distinct ultra-low velocity zones on Earth’s core-mantle boundary. Nat. Commun. 8, 177 (2017).

    Google Scholar 

  239. Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA 117, 30993–31001 (2020).

    Google Scholar 

  240. Hieronymus, C. F. & Bercovici, D. Discrete alternating hotspot islands formed by interaction of magma transport and lithospheric flexure. Nature 397, 604–607 (1999).

    Google Scholar 

  241. Jones, T. D. et al. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. Nature 545, 472–476 (2017).

    Google Scholar 

  242. Tatsumoto, M. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet. Sci. Lett. 38, 63–87 (1978).

    Google Scholar 

  243. Dana, J. D. in United States Exploring Expedition (with Atlas) Vol. 10 (ed. Wilkes, C.) (Putnam, 1849).

  244. Barker, A. K., Holm, P. M., Peate, D. W. & Baker, J. A. A 5 million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago. Contrib. Mineral. Petrol. 160, 133–154 (2010).

    Google Scholar 

  245. Harpp, K. S., Hall, P. S. & Jackson, M. G. Galápagos and Easter: A tale of two hotspots. Galapagos Nat. Lab. Earth Sci. 204, 27–40 (2014).

    Google Scholar 

  246. Chauvel, C. et al. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochem. Geophys. Geosyst. 13, Q07005 (2012).

    Google Scholar 

  247. Koppers, A. A. P. et al. Age systematics of two young en echelon Samoan volcanic trails. Geochem. Geophys. Geosyst. 12, Q07025 (2011).

    Google Scholar 

  248. Finlayson, V. A. et al. Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot. Earth Planet. Sci. Lett. 500, 168–179 (2018).

    Google Scholar 

  249. Werner, R., Hoernle, K., Barckhausen, U. & Hauff, F. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y.: Constraints from morphology, geochemistry, and magnetic anomalies. Geochem. Geophys. Geosyst. 4, 1108 (2003).

    Google Scholar 

  250. Payne, J. A., Jackson, M. G. & Hall, P. S. Parallel volcano trends and geochemical asymmetry of the Society Islands hotspot track. Geology 41, 19–22 (2013).

    Google Scholar 

  251. Ren, Z. Y., Ingle, S., Takahashi, E., Hirano, N. & Hirata, T. The chemical structure of the Hawaiian mantle plume. Nature 436, 837–840 (2005).

    Google Scholar 

  252. Frey, F. A. & Rhodes, J. M. Intershield geochemical differences among Hawaiian volcanoes: Implications for source compositions, melting process and magma ascent paths. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 342, 121–136 (1993).

    Google Scholar 

  253. Kurz, M. D., Kenna, T. C., Lassiter, J. C. & DePaolo, D. J. Helium isotopic evolution of Mauna Kea volcano: First results from the 1-km drill core. J. Geophys. Res. Solid Earth 101, 11781–11791 (1996).

    Google Scholar 

  254. DePaolo, D. J., Bryce, J. G., Dodson, A., Shuster, D. L. & Kennedy, B. M. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem. Geophys. Geosyst. 2, 2000GC000139 (2001).

    Google Scholar 

  255. Konrad, K., Graham, D. W., Kent, A. J. R. & Koppers, A. A. P. Spatial and temporal variability in Marquesas Islands volcanism revealed by 3He/4He and the composition of olivine-hosted melt inclusions. Chem. Geol. 477, 161–176 (2018).

    Google Scholar 

  256. Ito, G. & Mahoney, J. J. Flow and melting of a heterogeneous mantle: 2. Implications for a chemically nonlayered mantle. Earth Planet. Sci. Lett. 230, 47–63 (2005).

    Google Scholar 

  257. Bryce, J. G., DePaolo, D. J. & Lassiter, J. C. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosyst. 6, Q09G18 (2005).

    Google Scholar 

  258. Hofmann, A. W., Farnetani, C. G., Spiegelman, M. & Class, C. Displaced helium and carbon in the Hawaiian plume. Earth Planet. Sci. Lett. 312, 226–236 (2011).

    Google Scholar 

  259. Harpp, K. S. & Weis, D. Insights into the origins and compositions of mantle plumes: A comparison of Galápagos and Hawai’i. Geochem. Geophys. Geosyst. 21, e2019GC008887 (2020).

    Google Scholar 

  260. Weis, D., Harrison, L. N., McMillan, R. & Williamson, N. M. B. Fine-scale structure of Earth’s deep mantle resolved through statistical analysis of Hawaiian basalt geochemistry. Geochem. Geophys.Geosystems 21, e2020GC009292 (2020).

    Google Scholar 

  261. Nobre Silva, I. G., Weis, D. & Scoates, J. S. Isotopic systematics of the early Mauna Kea shield phase and insight into the deep mantle beneath the Pacific Ocean. Geochem. Geophys. Geosyst. 14, 659–676 (2013).

    Google Scholar 

  262. Regelous, M., Hofmann, A. W., Abouchami, W. & Galer, S. J. G. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).

    Google Scholar 

  263. Harrison, L. N., Weis, D. & Garcia, M. O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. Earth Planet. Sci. Lett. 463, 298–309 (2017).

    Google Scholar 

  264. Williamson, N. M. B., Weis, D., Scoates, J. S., Pelletier, H. & Garcia, M. O. Tracking the geochemical transition between the Kea-dominated Northwest Hawaiian Ridge and the bilateral Loa-Kea trends of the Hawaiian Islands. Geochem. Geophys. Geosyst. 20, 4354–4369 (2019).

    Google Scholar 

  265. Minster, J. B. & Jordan, T. H. Present-day plate motions. J. Geophys. Res. 83, 5331–5354 (1978).

    Google Scholar 

  266. Müller, R. D., Royer, J. Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993).

    Google Scholar 

  267. Duncan, R. A. & Clague, D. A. in The Ocean Basins and Margins Vol. 7A: The Pacific Ocean (eds Nairn, A. E. M., Stehli, F. L., & Uyeda, S.) 89–121 (Plenum Press, 1985).

  268. Wessel, P. & Kroenke, L. W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. J. Geophys. Res. Solid Earth 113, B06101 (2008).

    Google Scholar 

  269. Wessel, P. & Conrad, C. P. Assessing models for Pacific absolute plate and plume motions. Geochem. Geophys. Geosyst. 20, 6016–6032 (2019).

    Google Scholar 

  270. Tarduno, J. A. et al. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science 301, 1064–1069 (2003).

    Google Scholar 

  271. Tarduno, J. A. & Koppers, A. A. P. When hotspots move the new view of mantle dynamics made possible by scientific ocean drilling. Oceanography 32, 150–152 (2019).

    Google Scholar 

  272. O’Connor, J. M. et al. Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain. Geochem. Geophys. Geosyst. 14, 4564–4584 (2013).

    Google Scholar 

  273. Koppers, A. A. P. et al. New 40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter–hot spot motion. Geochem. Geophys. Geosyst. 12, Q0AM02 (2011).

    Google Scholar 

  274. Sharp, W. D. & Clague, D. A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science 313, 1281–1284 (2006).

    Google Scholar 

  275. Bono, R. K., Tarduno, J. A. & Bunge, H. P. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed. Nat. Commun. 10, 3370 (2019).

    Google Scholar 

  276. Hassan, R., Muller, R. D., Gurnis, M., Williams, S. E. & Flament, N. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 533, 239–242 (2016).

    Google Scholar 

  277. Arnould, M., Ganne, J., Coltice, N. & Feng, X. Northward drift of the Azores plume in the Earth’s mantle. Nat. Commun. 10, 3235 (2019).

    Google Scholar 

  278. Wang, S. M., Yu, H. Z., Zhang, Q. & Zhao, Y. H. Absolute plate motions relative to deep mantle plumes. Earth Planet. Sci. Lett. 490, 88–99 (2018).

    Google Scholar 

  279. Morgan, W. J. & Morgan, J. P. in Plates, Plumes and Planetary Processes Vol. 430 (eds Foulger, G. R. & Jurdy, D. M.) 65–78 (Geological Society of America, 2007).

  280. Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N. & Muller, R. D. Constraining absolute plate motions since the Triassic. J. Geophys. Res. Solid Earth 124, 7231–7258 (2019).

    Google Scholar 

  281. Becker, T. W., Schaeffer, A. J., Lebedev, S. & Conrad, C. P. Toward a generalized plate motion reference frame. Geophys. Res. Lett. 42, 3188–3196 (2015).

    Google Scholar 

  282. Wang, C. Z., Gordon, R. G., Zhang, T. & Zheng, L. Observational test of the global moving hot spot reference frame. Geophys. Res. Lett. 46, 8031–8038 (2019).

    Google Scholar 

  283. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. Solid Earth 117, B09101 (2012).

    Google Scholar 

  284. Burke, K. & Dewey, J. F. Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J. Geol. 81, 406–433 (1973).

    Google Scholar 

  285. Fahrig, W. F. & Schwarz, E. J. Additional paleomagnetic data on the Baffin diabase dikes and a revised franklin pole. Can. J. Earth Sci. 10, 576–581 (1973).

    Google Scholar 

  286. Brune, S., Williams, S. E., Butterworth, N. P. & Muller, R. D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).

    Google Scholar 

  287. Bercovici, D. & Long, M. D. Slab rollback instability and supercontinent dispersal. Geophys. Res. Lett. 41, 6659–6666 (2014).

    Google Scholar 

  288. Huang, C. et al. Modeling the inception of supercontinent breakup: stress state and the importance of orogens. Geochem. Geophys. Geosyst. 20, 4830–4848 (2019).

    Google Scholar 

  289. Ziegler, P. A. & Cloetingh, S. Dynamic processes controlling evolution of rifted basins. Earth Sci. Rev. 64, 1–50 (2004).

    Google Scholar 

  290. Buiter, S. J. H. & Torsvik, T. H. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res. 26, 627–653 (2014).

    Google Scholar 

  291. Brune, S., Popov, A. A. & Sobolev, S. V. Quantifying the thermo-mechanical impact of plume arrival on continental break-up. Tectonophysics 604, 51–59 (2013).

    Google Scholar 

  292. Dang, Z. et al. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Commun. Earth Environ. 1, 51 (2020).

    Google Scholar 

  293. Koptev, A., Calais, E., Burov, E., Leroy, S. & Gerya, T. Dual continental rift systems generated by plume–lithosphere interaction. Nat. Geosci. 8, 388–392 (2015).

    Google Scholar 

  294. Whittaker, J. M. et al. Eastern Indian Ocean microcontinent formation driven by plate motion changes. Earth Planet. Sci. Lett. 454, 203–212 (2016).

    Google Scholar 

  295. Gaina, C., Gernigon, L. & Ball, P. Palaeocene–Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. J. Geol. Soc. 166, 601–616 (2009).

    Google Scholar 

  296. Nemčok, M. et al. Mechanisms of microcontinent release associated with wrenching-involved continental break-up; a review. Geol. Society Publ. 431, 323–359 (2016).

    Google Scholar 

  297. Müller, D. R., Gaina, C., Roest, W. R. & Hansen, D. L. A recipe for microcontinent formation. Geology 29, 203–206 (2001).

    Google Scholar 

  298. Albarède, F. The growth of continental crust. Tectonophysics 296, 1–14 (1998).

    Google Scholar 

  299. Van Kranendonk, M. J. Two types of Archean continental crust: Plume and plate tectonics on early Earth. Am. J. Sci. 310, 1187–1209 (2011).

    Google Scholar 

  300. Reagan, M. K. et al. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet. Sci. Lett. 506, 520–529 (2019).

    Google Scholar 

  301. Rey, P. F., Coltice, N. & Flament, N. Spreading continents kick-started plate tectonics. Nature 513, 405–408 (2014).

    Google Scholar 

  302. Maunder, B., Prytulak, J., Goes, S. & Reagan, M. Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces. Nat. Commun. 11, 1874 (2020).

    Google Scholar 

  303. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V. & Whattam, S. A. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

    Google Scholar 

  304. Arnould, M., Coltice, N., Flament, N. & Mallard, C. Plate tectonics and mantle controls on plume dynamics. Earth Planet. Sci. Lett. 547, 116439 (2020).

    Google Scholar 

  305. Tackley, P. J. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys. Earth Planet. Inter. 171, 7–18 (2008).

    Google Scholar 

  306. Faccenna, C. et al. Subduction-triggered magmatic pulses: A new class of plumes? Earth Planet. Sci. Lett. 299, 54–68 (2010).

    Google Scholar 

  307. Sager, W. W. et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nat. Geosci. 12, 661–66 (2019).

    Google Scholar 

  308. Sager, W. W. et al. An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nat. Geosci. 6, 976–981 (2013).

    Google Scholar 

  309. Conrad, C. P. & Lithgow-Bertelloni, C. Faster seafloor spreading and lithosphere production during the mid-Cenozoic. Geology 35, 29–32 (2007).

    Google Scholar 

  310. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys Geosystems 9, Q04006 (2008).

    Google Scholar 

  311. Jackson, C. R. M., Bennett, N. R., Du, Z., Cottrell, E. & Fei, Y. Early episodes of high-pressure core formation preserved in plume mantle. Nature 553, 491–495 (2018).

    Google Scholar 

  312. Conrad, C. P., Lithgow-Bertelloni, C. & Louden, K. E. Iceland, the Farallon slab, and dynamic topography of the North Atlantic. Geology 32, 177–180 (2004).

    Google Scholar 

  313. Steinberger, B., Conrad, C. P., Tutu, A. O. & Hoggard, M. J. On the amplitude of dynamic topography at spherical harmonic degree two. Tectonophysics 760, 221–228 (2019).

    Google Scholar 

  314. Li, Z. X. & Zhong, S. J. Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter. 176, 143–156 (2009).

    Google Scholar 

  315. Petersen, K. D., Nielsen, S. B., Clausen, O. R., Stephenson, R. & Gerya, T. Small-scale mantle convection produces stratigraphic sequences in sedimentary basins. Science 329, 827–830 (2010).

    Google Scholar 

  316. Rovere, A. et al. Mid-Pliocene shorelines of the US Atlantic Coastal Plain — An improved elevation database with comparison to Earth model predictions. Earth Sci. Rev. 145, 117–131 (2015).

    Google Scholar 

  317. Muller, R. D. Sedimentary basins feeling the heat from below. Science 329, 769–770 (2010).

    Google Scholar 

  318. Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    Google Scholar 

  319. Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).

    Google Scholar 

  320. Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).

    Google Scholar 

  321. Reichow, M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Google Scholar 

  322. Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Google Scholar 

  323. Clapham, M. E. & Renne, P. R. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47, 275–27 (2019).

    Google Scholar 

  324. Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Google Scholar 

  325. Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).

    Google Scholar 

  326. Renne, P. R. et al. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350, 76–78 (2015).

    Google Scholar 

  327. French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    Google Scholar 

  328. Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

    Google Scholar 

  329. Norton, I. O. Plate motions in the North Pacific: the 43 Ma nonevent. Tectonics 14, 1080–1094 (1995).

    Google Scholar 

  330. Tarduno, J. A. & Cottrell, R. D. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts. Earth Planet. Sci. Lett. 153, 171–180 (1997).

    Google Scholar 

  331. Torsvik, T. H. et al. Pacific plate motion change caused the Hawaiian-Emperor Bend. Nat. Commun. 8, 15660 (2017).

    Google Scholar 

  332. Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).

    Google Scholar 

  333. Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Google Scholar 

  334. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Google Scholar 

  335. Besse, J. & Courtillot, V. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res. Solid Earth 107, EPM 6-1–EPM 6-31 (2002).

    Google Scholar 

  336. Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).

    Google Scholar 

  337. Gold, T. Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955).

    Google Scholar 

  338. Steinberger, B. & O’Connell, R. J. Changes of the Earth’s rotation axis owing to advection of mantle density heterogeneities. Nature 387, 169–173 (1997).

    Google Scholar 

  339. Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    Google Scholar 

  340. Creveling, J. R., Mitrovica, J. X., Chan, N.-H., Latychev, K. & Matsuyama, I. Mechanisms for oscillatory true polar wander. Nature 491, 244–248 (2012).

    Google Scholar 

  341. Steinberger, B., Seidel, M. L. & Torsvik, T. H. Limited true polar wander as evidence that Earth’s nonhydrostatic shape is persistently triaxial. Geophys. Res. Lett. 44, 827–834 (2017).

    Google Scholar 

  342. Mitchell, R. N et al. A Late Cretaceous true polar wander oscillation. Nat. Commun. https://doi.org/10.1038/s41467-021-23803-8 (2020).

    Article  Google Scholar 

  343. Sager, W. W. & Koppers, A. A. P. Late Cretaceous polar wander of the Pacific plate: Evidence of a rapid true polar wander event. Science 287, 455–459 (2000).

    Google Scholar 

  344. Woodworth, D. & Gordon, R. G. Paleolatitude of the Hawaiian hot spot since 48 Ma: evidence for a mid-Cenozoic true polar stillstand followed by late Cenozoic true polar wander coincident with Northern Hemisphere glaciation. Geophys. Res. Lett. 45, 11632–11640 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Science Foundation (NSF) grants OCE-1912932 (A.A.P.K., K.K.), EAR-1900652 (M.G.J.) and EAR-1758198 (B.R.); National Aeronautics and Space Administration (NASA) grant OSP 201601412-001 (T.W.B.); Centre of Excellence project 223272 through the Research Council of Norway (RCN) and the innovation pool of the Helmholtz Association via an “Advanced Earth System Modelling Capacity (ESM)” activity (B.S.); and Australian Research Council (ARC) grant IH130200012 (R.D.M.). We thank E. Garnero and T. Jones for informal discussions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Anthony A. P. Koppers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks D. Weis (who co-reviewed with N. Williamson), Y. Niu, A. Hofmann and J. Ritsema for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Hotspot

Region of intra-plate volcanism that forms an age-progressive volcanic chain (like Hawaii) or a region of excessive volcanism along plate boundaries (like Iceland), with temperatures exceeding that of ambient asthenospheric mantle by ~100 °C or more.

Large igneous provinces

(LIPs). Extremely large accumulations of intrusive and extrusive volcanic rocks (areal extents >0.1 million km2 with volumes >0.1 million km3) deposited over a short geological period of time, often in less than 1 million years.

Large low-shear-velocity provinces

(LLSVPs). A large region (several thousand kilometres in size) of low shear velocity (a few percent lower than average) in the lowermost few hundreds of kilometres of the mantle. There are two of them, beneath Africa and the Pacific.

Hadean

Geologic eon in Earth history, starting with Earth’s accretion about 4.567 billion years ago and ending 4 billion years ago at the beginning of the Archaean.

Core–mantle boundary

Boundary between the liquid metal outer core and the mostly solid lower mantle at ~2,891-km depth.

660-km Seismic discontinuity

Seismic discontinuity corresponding to a solid–solid phase transition in the mantle at ~660-km depth.

True polar wander

Reorientation of the entire solid Earth with respect to the spin axis.

Eclogite

An ultra-high pressure metamorphic rock forming at depths greater than 35 km and typically associated with the transformation of basalt during oceanic plate subduction.

Geoid

Equipotential surface of the Earth’s gravity field that most closely coincides with mean sea level.

Superswells

Regions of elevated topography too large to be attributed to a single hotspot. Two prominent superswells overlie the corresponding large low-shear-velocity provinces in the Pacific and Africa.

Ultra-low velocity zones

(ULVZs). Smaller regions (hundreds of kilometres in size) of very low shear velocity (exceeding 10% lower than average) in the lowermost few tens of kilometres of the mantle. There are perhaps a dozen or more of them.

Thermal mantle plumes

Columnar upwellings of hot material from the lowermost mantle to the base of the lithosphere.

Hotspot swells

Regions of elevated topography (several hundred kilometres wide) caused by buoyant mantle plume material rising beneath and being dragged along with a moving plate.

Thermochemical mantle plumes

Columnar upwellings of hot and chemically distinct material from the lowermost mantle to the base of the lithosphere.

Ocean island basalts

A volcanic rock type typically of basaltic composition, forming in ocean basins away from plate tectonic boundaries and associated with intra-plate hotspot volcanoes and mantle plumes.

Peridotite

The dominant mantle rock type mostly made from silicate minerals olivine and pyroxene, rich in Mg and Fe, with less than 45% silica.

Euler poles

Poles describing the rotation of a plate on a sphere. Any rigid plate motion can be described as rotation around an Euler pole.

Dynamic topography

The part of topography that is caused, supported and maintained by mantle convection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koppers, A.A.P., Becker, T.W., Jackson, M.G. et al. Mantle plumes and their role in Earth processes. Nat Rev Earth Environ 2, 382–401 (2021). https://doi.org/10.1038/s43017-021-00168-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00168-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing