Skip to main content
Log in

Estimation of Sulfide Capacity of Slags Using Ionic Theory

  • Published:
Steel in Translation Aims and scope

Abstract

This article discusses the issues of sulfur removal in a ladle–furnace unit. The coefficient of sulfur distribution depends on sulfide capacity of slag, the coefficient of sulfur activity, as well as oxidation potential of medium and equilibrium constant. The sulfide capacity of slags CS is one of the most important properties of refining power of slags used upon extra furnace steel processing. One of the factors influencing on sulfide capacity is temperature. The equation is proposed to determine the sulfide capacity as a function of optical basicity and temperature in the range of 1400–1650°C. At optical basicity Λ not higher than 0.75, the error of the equation does not exceed 6%. The equation for estimation of optical basicity is proposed, which accounts for the influence of basic, acidic oxides and amphoteric oxide Al2O3. It is demonstrated that the slags comprised totally of homogeneous phase are characterized by higher optical basicity of aluminum oxide. The heterogeneous slags are characterized by lower optical basicity of Al2O3 in comparison with homogeneous slags. Most likely, this can be attributed to the fact that the homogenous slags are characterized by deficit of basic oxide CaO and, under the considered conditions, the compound Al2O3 starts to exert more basic properties than acidic ones. Therefore, in homogeneous slags, the optical basicity of aluminum oxide is higher and approaches the optical basicity of the oxide CaO. The estimations performed on real heats demonstrate that its optical basicity decreases upon increase in Al2O3 content in slag. A known value of optical basicity allows to determine sulfide capacity of slag, distribution coefficient of sulfur between metal and slag, and, respectively, final content of sulfur in metal. Theoretical estimations carried out for actual heats demonstrate that the sulfide capacity can be reasonably determined by ionic theory of slags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bigeev, A.M. and Bigeev V.A., Bigeev, A.M. and Bigeev, V.A., Metallurgiya stali. Teoriya i tekhnologya plavki stali (Metallurgy of Steel: Theory and Technology of Steel Smelting.), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ., 2000.

  2. Yavoiskii, V.I., Kryakovskii, Yu.V., Grigor’ev, V.P., Nechkin, Yu.M., Kravchenko, V.F., and Borodin, D.I., Metallurgiya stali (Steel Metallurgy), Moscow: Metallurgiya, 1983.

  3. von Knüppel, H., Desoxydation und Vakuumbehandlung von Stahlschmelzen Vol. 2: Grundlagen und Verfahren der Pfannenmetallurgie, Düsseldorf: Verlag Stahleisen, 1983.

    Google Scholar 

  4. Fandrich, R., Lüngen, H.B., and Wuppermann, C.D., Actual review on secondary metallurgy, Metall. Res. Technol., 2008, vol. 105, nos. 7–8, pp. 364–374. https://doi.org/10.1051/metal:2008053

    Article  CAS  Google Scholar 

  5. Fandrich, R., Lüngen, H.B., and Wuppermann, C.D., Secondary metallurgy—State of the art and research trends in Germany, Stahl Eisen, 2008, vol. 128, no. 2, pp. 45–53.

    Google Scholar 

  6. Turkdogan, E.T., Ladle deoxidation, desulphurisation and inclusions in steel—Part 1: Fundamentals, Arch. Eisenhuttenwes., 1983, vol. 54, no. 1, pp. 1–10. https://doi.org/10.1002/srin.19830519

    Article  CAS  Google Scholar 

  7. Pluschkell, W., Metallurgical reaction techniques for adjusting very low contents of C, P, S and N in steel, Stahl Eisen, 1990, vol. 110, no. 5, pp. 61–70.

    CAS  Google Scholar 

  8. Jonsson, L., Sichen, D., and Jönsson, P., A new approach to model sulphur refining in a gas-stirred ladle—a coupled CFD and thermodynamic model, ISIJ Int., 1998, vol. 38, no. 3, pp. 260–267. https://doi.org/10.2355/isijinternational.38.260

    Article  CAS  Google Scholar 

  9. Cao, Q., Pitts, A., and Nastac, L., Numerical modeling of fluid flow and desulphurisation kinetics in an argon-stirred ladle furnace, Ironmaking Steelmaking, 2018, vol. 45, no. 3, pp. 280–287. https://doi.org/10.1080/03019233.2016.1262574

    Article  CAS  Google Scholar 

  10. Chang, S., Wu, L., Guo, J., Pan, Y., and He, F., Industrial investigation of decarburization and desulphurization behavior of 120 t new single snorkel degasser, Ironmaking Steelmaking, 2020, vol. 47, no. 7, pp. 713–721. https://doi.org/10.1080/03019233.2019. 1580029

  11. Agapitov, E.B., Lemeshko, M.A., and Sokolova, M.S., Prospects for the use of hollow electrodes for deep desulfurization of steel in the ladle-furnace unit, Mater. Sci. Forum, 2020, vol. 989, pp. 474–479. https://doi.org/10.4028/www.scientific.net/MSF.989.474

    Article  Google Scholar 

  12. Komolova, O.A. and Grigorovich, K.V., Development of LF-software for modeling of refining processes in a ladle-furnace, J. Phys.: Conf. Ser., 2019, vol. 1347, no. 1, art. ID 012066. https://doi.org/10.1088/1742-6596/1347/1/012066

    Article  Google Scholar 

  13. Lin, L., Hou, Z.-X., Bao, Y.-P., Wu, Y.-X., Zhang, L.-Q., and Zeng, J.-Q., Gasification desulfurization and resource utilization of ladle furnace refining slag, Chin. J. Eng., 2018, vol. 40, pp. 154–160. https://doi.org/10.13374/j.issn2095-9389.2018.s1.022

    Article  Google Scholar 

  14. Socha, L., Hudzieczek, Z., Michalek, K., Pilka, V., and Piegza, Z., Verification of physical modelling of steel desulphurization in the plant conditions of the homogenization station, Proc. 23rd Int. Conf. on Metallurgy and Materials “METAL-2014,” Brno, 2014, pp. 64–71.

  15. Socha, L., Bažan, J., Gryc, K., Morávka, J., Styrnal, P., Pilka, V., and Piegza, Z., Optimization of the slag mode in the ladle during the steel processing of secondary metallurgy, Mater. Tehnol., 2013, vol. 47, no. 5, pp. 673–678.

    CAS  Google Scholar 

  16. Puţan, A., Hepuţ, T., Vilceanu, L., and Puţan, V., Research on desulphurization of steel with calcium aluminate synthetic slag with addition of titanium oxide, Proc. 4th Int. Conf. on Manufacturing Engineering, Quality, and Production Systems (MEQAPS’11), Barcelona, 2011, pp. 147–151.

  17. Burmasov, S.P., Gudov, A.G., Yaroshenko, Yu.G., Meling, V.V., and Dresvyankina, L.E., Mass transfer in the ladle refining of steel with gas mixing, Steel Transl., 2015, vol. 45, no. 9, pp. 635–639. https://doi.org/10.3103/S096709121509003X

    Article  Google Scholar 

  18. Popel’, S.I., Sotnikov, A.I., and Boronenkov, V.N., Teoriya metallurgicheskikh protsessov (Theory of Metallurgical Processes), Moscow: Metallurgiya, 1986.

  19. Kazachkov, E.A., Raschety po teorii metallurgicheskikh protsessov (Calculations on the Theory of Metallurgical Processes), Moscow: Metallurgiya, 1988.

  20. Itogi nauki i tekhniki. Teoriya metallurgicheskikh protsessov (The Results of Science and Technology: Theory of Metallurgical Processes), Moscow: Vses. Inst. Nauchn. Tekh. Inf., 1987.

  21. Korovin, V.A., Leushin, O.I., Palavin, R.N., Kolganov, V.N., Cherkasov, S.V., and Kostromin, S.V., Secondary metallurgy and metal quality, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2009, no. 8, pp. 13–15.

  22. Sommerville, I.D., The measurement, prediction and use of capacities of metallurgical slags, Proc. 4th Int. Conf. on Injection Metallurgy “Scaninject IV,” Luleå, Sweden, June 11–13, 1986, Luleå: MEFOS, 1986, pp. 8.1–8.21.

  23. Metelkin, A.A., Sheshukov, O.Yu., Savel’ev, M.V., Shevchenko, O.I., and Egiazar’yan, D.K., Steel desulfurization in a ladle-furnace unit, Materialy Mezhdunarodnoi nauchnoi konferentsii “Fiziko-khimicheskie osnovy metallurgicheskikh protsessov” imeni akademika A.M. Samarina (Proc. Int. Sc. Conf. Named after Academician A.M. Samarin “Physical and Chemical Foundations of Metallurgical Processes”), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2019.

  24. Novikov, V.K. and Nevidimov, V.N., Polimernaya priroda rasplavlennykh shlakov (Polymer Nature of Molten Slag), Yekaterinburg: Ural. Gos. Tekh. Univ.–Ural. Politekh. Inst., 2006.

  25. Sheshukov, O.Yu., Mikheenkov, M.A., Nekrasov, I.V., Egiazar’yan, D.K., Metelkin, A.A., and Shevchenko, O.I., Voprosy utilizatsii rafinirovannykh shlakov staleplavil’nogo proizvodstva (Utilization of Refining Slag from Steelmaking Production), Nizhniy Tagil: Nizhnetagil’sk. Tekhnol. Inst., Ural. Fed. Univ., 2017.

  26. Sheshukov, O.Yu., Nekrasov, I.V., Bonar’, S.N., Egiazar’yan, D.K., Tsymbalist, M.M., and Sivtsov, A.V., Sulfide capacity of alumina slag from extra-furnace steel processing and oxygen anions activity, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2017, no. 2, pp. 30–33.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Metelkin, O. Yu. Sheshukov, O. I. Shevchenko or D. K. Egiazaryan.

Additional information

Translated by I. Moshkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metelkin, A.A., Sheshukov, O.Y., Savel’ev, M.V. et al. Estimation of Sulfide Capacity of Slags Using Ionic Theory. Steel Transl. 51, 73–78 (2021). https://doi.org/10.3103/S0967091221020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091221020066

Keywords:

Navigation