Skip to main content

Advertisement

Log in

Molecular insights into phytochemicals exhibiting anti-arthritic activity: systematic review

John Di Battista

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease with an unclear etiology causing severe inflammation, joint pain, and destruction that increases the chance of disability over time. Dysregulation of various immune signaling cascades regulates the formation of synovial hyperplasia and pannus formation. Imbalance in cytokine levels, predominantly proinflammatory cytokines like TNF-α, IL-1, IL-6, IL-17, and IL-12p70 profoundly influences the disease's pathogenesis. Even though various strategies are adopted to treat arthritis, their side effects and cost limit their usage. This review discusses the multiple pathways involved in the pathogenesis of rheumatoid arthritis, provides a systematic analysis of various phytochemicals, and discusses their potential molecular targets in RA treatment.

Methods

The literature mining was done from scientific databases such as PubMed, Europe PMC, Web of Science, Scopus, etc. The terminologies used for literature mining were Rheumatoid arthritis, phytochemicals, cell signaling pathways, molecular mechanism, etc.

Results

NF-κB, MAPKs, and JAK–STAT are the key pathways potentially targeted for RA treatment. However, specific susceptible pathways and potential targets remain unexplored. Besides, the phytochemicals remain an immense source to be exploited for the effective treatment of RA, overcoming the demerits of the conventional strategies. Various in vitro and in vivo findings suggest that polyphenols and flavonoids effectively treat RA conditions overcoming the demerits, such as limitations in usage and toxicity. The phytochemicals should be explored in par with the pathological mechanisms with all the available targets to determine their therapeutic efficacy. Through the established therapeutic efficacy, phytochemicals can help developing therapeutics that are safe and efficacious for RA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15.

    PubMed  PubMed Central  Google Scholar 

  2. McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis—shaping the immunological landscape. Nat Rev Rheumatol. 2016;12:63.

    CAS  PubMed  Google Scholar 

  3. Shao X, Hudson M, Colmegna I, Greenwood CMT, Fritzler MJ, Awadalla P, et al. Rheumatoid arthritis-relevant DNA methylation changes identified in ACPA-positive asymptomatic individuals using methylome capture sequencing. Clin Epigenetics. 2019;11:110.

    PubMed  PubMed Central  Google Scholar 

  4. Maibom-Thomsen SL, Trier NH, Holm BE, Hansen KB, Rasmussen MI, Chailyan A, et al. Immunoglobulin G structure and rheumatoid factor epitopes. PLoS ONE. 2019;14:e0217624–e0217624.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alunno A, Carubbi F, Giacomelli R, Gerli R. Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. BMC Rheumatol. 2017;1:1–13.

    PubMed  PubMed Central  Google Scholar 

  6. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295.

    PubMed  PubMed Central  Google Scholar 

  7. Zhou J, Yu Y, Yang X, Wang Y, Song Y, Wang Q, et al. Berberine attenuates arthritis in adjuvant-induced arthritic rats associated with regulating polarization of macrophages through AMPK/NF-кB pathway. Eur J Pharmacol. 2019;852:179–88.

    CAS  PubMed  Google Scholar 

  8. Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00353.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fang Q, Zhou C, Nandakumar KS. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediat Inflamm. 2020;2020:3830212.

    Google Scholar 

  10. Cooles FAH, Isaacs JD, Anderson AE. Treg cells in rheumatoid arthritis: An update. Curr Rheumatol Rep. 2013. https://doi.org/10.1007/s11926-013-0352-0.

    Article  PubMed  Google Scholar 

  11. De S, Manna A, Kundu S, De Sarkar S, Chatterjee U, Sen T, et al. Allylpyrocatechol attenuates collagen-induced arthritis via attenuation of oxidative stress secondary to modulation of the MAPK, JAK/STAT, and Nrf2/HO-1 pathways. J Pharmacol Exp Ther. 2017;360:249.

    CAS  PubMed  Google Scholar 

  12. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.

    CAS  PubMed  Google Scholar 

  13. Li G, Qin Y, Du P. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling. Life Sci. 2015;136:67–72.

    CAS  PubMed  Google Scholar 

  14. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology. 2012;51:v3-11.

    CAS  PubMed  Google Scholar 

  15. Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with Concomitant Therapy Study Group. N Engl J Med. 2000;343:1594–602.

    CAS  PubMed  Google Scholar 

  16. Hutami IR, Tanaka E, Izawa T. Crosstalk between Fas and S1P(1) signaling via NF-kB in osteoclasts controls bone destruction in the TMJ due to rheumatoid arthritis. Jpn Dent Sci Rev. 2019;55:12–9.

    PubMed  Google Scholar 

  17. Choi M-C, Jo J, Park J, Kang HK, Park Y. NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells. 2019;8:734.

    CAS  PubMed Central  Google Scholar 

  18. Sarmiento Salinas FL, Santillán Benítez JG, Hernández Navarro MD, Mendieta ZH. NF-κB1/IKKε gene expression and clinical activity in patients with rheumatoid arthritis. Lab Med. 2017;49:11–7.

    PubMed  Google Scholar 

  19. Noort AR, Tak PP, Tas SW. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther. 2015;17:15.

    PubMed  PubMed Central  Google Scholar 

  20. Korb A, Tohidast-Akrad M, Cetin E, Axmann R, Smolen J, Schett G. Differential tissue expression and activation of p38 MAPK alpha, beta, gamma, and delta isoforms in rheumatoid arthritis. Arthritis Rheum US. 2006;54:2745–56.

    CAS  Google Scholar 

  21. Thalhamer T, McGrath MA, Harnett MM. MAPKs and their relevance to arthritis and inflammation. Rheumatology. 2008;47:409–14.

    CAS  PubMed  Google Scholar 

  22. Clark AR, Dean JLE. The p38 MAPK pathway in rheumatoid arthritis: a sideways look. Open Rheumatol J. 2012;6:209–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology. 2002;143:3105–13.

    CAS  PubMed  Google Scholar 

  24. Kitanaka T, Nakano R, Kitanaka N, Kimura T, Okabayashi K, Narita T, et al. JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts. Sci Rep. 2017;7:39914.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu H, Jin H, Yu L, Qu S. Inhibition of ERK pathway decreases the synovial hyperplasia and angiogenesis of rheumatoid arthritis rats. Eur J Inflamm. 2018;16:205873921879453.

    Google Scholar 

  26. Lu N, Malemud JC. Extracellular signal-regulated kinase: a regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int J Mol Sci. 2019;20:3972.

    Google Scholar 

  27. Singh K, Deshpande P, Pryshchep S, Colmegna I, Liarski V, Weyand CM, et al. ERK-Dependent T cell receptor threshold calibration in rheumatoid arthritis. J Immunol. 2009;183:8258–67.

    CAS  PubMed  Google Scholar 

  28. Shang W, Zhao L-J, Dong X-L, Zhao Z-M, Li J, Zhang B-B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Han Z, Boyle DL, Aupperle KR, Bennett B, Manning AM, Firestein GS. Jun N-terminal kinase in rheumatoid arthritis. J Pharmacol Exp Ther. 1999;291:124–30.

    CAS  PubMed  Google Scholar 

  30. Kato M. New insights into IFN-γ in rheumatoid arthritis: role in the era of JAK inhibitors. Immunol Med. 2020;43:72–8.

    PubMed  Google Scholar 

  31. Ciobanu Alexandra D, Poenariu Sabin I, Crînguș L-I, Vreju Ananu F, Turcu-Stiolica A, Tica Adrian A, et al. JAK/STAT pathway in pathology of rheumatoid arthritis (review). Exp Ther Med. 2020;20:3498–503.

    Google Scholar 

  32. Xu L, Zhang L, Zhang H, Yang Z, Qi L, Wang Y, et al. The participation of fibroblast growth factor 23 (FGF23) in the progression of osteoporosis via JAK/STAT pathway. J Cell Biochem. 2018;119:3819–28.

    CAS  PubMed  Google Scholar 

  33. Nicol LSC, Thornton P, Hatcher JP, Glover CP, Webster CI, Burrell M, et al. Central inhibition of granulocyte-macrophage colony-stimulating factor is analgesic in experimental neuropathic pain. Pain. 2018. https://doi.org/10.1097/j.pain.0000000000001130.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malemud CJ. The discovery of novel experimental therapies for inflammatory arthritis. Mediat Inflamm. 2009. https://doi.org/10.1177/1759720X18776224.

    Article  Google Scholar 

  35. Malemud CJ. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2018;10:117–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanaka S. Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways. World J Orthop. 2013;4:1–6.

    PubMed  PubMed Central  Google Scholar 

  37. Bi H, Chen X, Gao S, Yu X, Xiao J, Zhang B, et al. Key triggers of osteoclast-related diseases and available strategies for targeted therapies: a review. Front Med. 2017;4:234.

    Google Scholar 

  38. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed Res Int. 2020;2020:6910312.

    PubMed  PubMed Central  Google Scholar 

  39. Papadaki M, Rinotas V, Violitzi F, Thireou T, Panayotou G, Samiotaki M, et al. New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Front Immunol. 2019. https://doi.org/10.1038/s41419-019-1413-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128.

    PubMed  PubMed Central  Google Scholar 

  41. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Es N. NLRP3 inflammasome: a novel therapeutic target in arthritis. J Arthritis. 2018;7:1000118.

    Google Scholar 

  43. Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthr Cartil. 2020;28:400–9.

    CAS  Google Scholar 

  44. Liu W, Yu W-M, Zhang J, Chan RJ, Loh ML, Zhang Z, et al. Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Leukemia. 2017;31:1415–22.

    CAS  PubMed  Google Scholar 

  45. Cheng Z, Sun W, Ni X, Xu H, Wang Y. GAB2 inhibits chondrocyte apoptosis through PI3K-AKT signaling in osteoarthritis. Int J Clin Exp Pathol. 2020;13:616–23.

    PubMed  PubMed Central  Google Scholar 

  46. Panda S, Sikdar M, Biswas S, Sharma R, Kar A. Allylpyrocatechol, isolated from betel leaf ameliorates thyrotoxicosis in rats by altering thyroid peroxidase and thyrotropin receptors. Sci Rep. 2019;9:12276.

    PubMed  PubMed Central  Google Scholar 

  47. De S, Kundu S, Chatterjee U, Chattopadhyay S, Chatterjee M. Allylpyrocatechol attenuates methotrexate-induced hepatotoxicity in a collagen-induced model of arthritis. Free Radic Res. 2018;52:698–711.

    CAS  PubMed  Google Scholar 

  48. Kundu S, Bala A, Ghosh P, Mukhopadhyay D, Mitra A, Sarkar A, et al. Attenuation of oxidative stress by Allylpyrocatechol in synovial cellular infiltrate of patients with Rheumatoid Arthritis. Free Radic Res. 2011;45:518–26.

    CAS  PubMed  Google Scholar 

  49. Li Z, Tan J, Wang L, Li Q. Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways. Inflammation. 2017;40:1599–605.

    CAS  PubMed  Google Scholar 

  50. Chiou W, Chen C, Lin J. Mechanisms of suppression of inducible nitric oxide synthase (iNOS ) expression in RAW 264.7 cells by andrographolide. Br J Pharmacol. 2014;129:1553–60.

    Google Scholar 

  51. Yan J, Chen Y, He C, Yang Z, Lü C, Chen X. Andrographolide induces cell cycle arrest and apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Cell Biol Toxicol. 2012;28:47–56.

    CAS  PubMed  Google Scholar 

  52. Tangyuenyong S, Viriyakhasem N, Peansukmanee S, Kongtawelert P, Ongchai S. Andrographolide exerts chondroprotective activity in equine cartilage explant and suppresses interleukin-1 β -induced MMP-2 expression in equine chondrocyte culture. Int Sch Res Not. 2014;2014:1–8.

    Google Scholar 

  53. Zhai ZJ, Li HW, Liu GW, Qu XH, Tian B, Yan W, et al. Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Br J Pharmacol. 2014;171:663–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carretta MD, Alarcón P, Jara E, Solis L, Hancke JL, Concha II, et al. Andrographolide reduces IL-2 production in T-cells by interfering with NFAT and MAPK activation. Eur J Pharmacol. 2009;602:413–21.

    CAS  PubMed  Google Scholar 

  55. Ding Q, Ji X, Cheng Y, Yu Y, Qi Y, Wang X. Inhibition of matrix metalloproteinases and inducible nitric oxide synthase by andrographolide in human osteoarthritic chondrocytes. Mod Rheumatol. 2013;23:1124–32.

    CAS  PubMed  Google Scholar 

  56. Li Y, He S, Tang J, Ding N, Chu X, Cheng L, et al. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW2647 cells through suppression of NF-κB/MAPK signaling pathway. Evid Based Compl Altern Med. 2017. https://doi.org/10.1155/2017/8248142.

    Article  Google Scholar 

  57. Lee W-R, Chung C-L, Hsiao C-J, Chou Y-C, Hsueh P-J, Yang P-C, et al. Suppression of matrix metalloproteinase-9 expression by andrographolide in human monocytic THP-1 cells via inhibition of NF-κB activation. Phytomedicine. 2012;19:270–7.

    CAS  PubMed  Google Scholar 

  58. Li X, Han Y, Zhou Q, Jie H, He Y, Han J, et al. Apigenin, a potent suppressor of dendritic cell maturation and migration, protects against collagen-induced arthritis. J Cell Mol Med. 2016;20:170–80.

    PubMed  Google Scholar 

  59. Shin G-C, Kim C, Lee J-M, Cho W-S, Lee S-G, Jeong M, et al. Apigenin-induced apoptosis is mediated by reactive oxygen species and activation of ERK1/2 in rheumatoid fibroblast-like synoviocytes. Chem Biol Interact. 2009;182:29–36.

    CAS  PubMed  Google Scholar 

  60. Sun Q, Jiang S, Yang K, Zheng J, Zhang L, Xu W. Apigenin enhances the cytotoxic effects of tumor necrosis factor-related apoptosis-inducing ligand in human rheumatoid arthritis fibroblast-like synoviocytes. Mol Biol Rep. 2012;39:5529–35.

    CAS  PubMed  Google Scholar 

  61. Xu L, Zhang L, Bertucci AM, Pope RM, Datta SK. Apigenin, a dietary flavonoid, sensitizes human T cells for activation-induced cell death by inhibiting PKB/Akt and NF-κB activation pathway. Immunol Lett. 2008;121:74–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu Z, Jiao Q, Ding J, Liu F, Liu R, Shan L, et al. Berberine induces dendritic cell apoptosis and has therapeutic potential for rheumatoid arthritis. Arthritis Rheum. 2011;63:949–59.

    CAS  PubMed  Google Scholar 

  63. Wang X, Jiang S, Sun Q. Effects of berberine on human rheumatoid arthritis fibroblast-like synoviocytes. Exp Biol Med. 2011;236:859–66.

    CAS  Google Scholar 

  64. Ganova P, Belenska-Todorova L, Doncheva T, Ivanovska N. Berberine prevents bone and cartilage destruction and influences cell senescence in experimental arthritis. J Adv Med Pharm Sci. 2017;15:1–8.

    Google Scholar 

  65. Wang Z, Chen Z, Yang S, Wang Y, Huang Z, Gao J, et al. Berberine ameliorates collagen-induced arthritis in rats associated with anti-inflammatory and anti-angiogenic effects. Inflammation. 2014;37:1789–98.

    CAS  PubMed  Google Scholar 

  66. Wang W, Sun W, Jin L. Caffeic acid alleviates inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes by inhibiting phosphorylation of IκB kinase α/β and IκBα. Int Immunopharmacol. 2017;48:61–6.

    CAS  PubMed  Google Scholar 

  67. Fikry EM, Gad AM, Eid AH, Arab HH. Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed Pharmacother. 2019;110:878–86.

    CAS  PubMed  Google Scholar 

  68. Cascão R, Vidal B, Jalmari Finnilä MA, Lopes IP, Teixeira RL, Saarakkala S, et al. Effect of celastrol on bone structure and mechanics in arthritic rats. RMD Open. 2017;3:e000438.

    PubMed  PubMed Central  Google Scholar 

  69. Cascão R, Vidal B, Lopes IP, Paisana E, Rino J, Moita LF, et al. Decrease of CD68 synovial macrophages in celastrol treated arthritic rats. PLoS ONE. 2015;10:e0142448.

    PubMed  PubMed Central  Google Scholar 

  70. Wong VKW, Qiu C, Xu S, Law BYK, Zeng W, Wang H, et al. Ca2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br J Pharmacol. 2019;176:2922–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fang Z, He D, Yu B, Liu F, Zuo J, Li Y, et al. High-throughput study of the effects of celastrol on activated fibroblast-like synoviocytes from patients with rheumatoid arthritis. Genes (Basel). 2017;8:221.

    Google Scholar 

  72. Yuan K, Huang G, Zhang S, Zhu Q, Yu R, Sheng H, et al. Celastrol alleviates arthritis by modulating the inflammatory activities of neutrophils. J Tradit Chin Med Sci. 2017;4:50–8.

    Google Scholar 

  73. Wang Y, Zhou C, Gao H, Li C, Li D, Liu P, et al. Therapeutic effect of Cryptotanshinone on experimental rheumatoid arthritis through downregulating p300 mediated-STAT3 acetylation. Biochem Pharmacol. 2017;138:119–29.

    CAS  PubMed  Google Scholar 

  74. Wang Y, Wang S, Li Y, Jiang J, Zhou C, Li C, et al. Therapeutic effect of Cryptotanshinone on collagen-induced arthritis in rats via inhibiting nuclear factor kappa B signaling pathway. Transl Res. 2015;165:704–16.

    CAS  PubMed  Google Scholar 

  75. Tang S, Shen X-Y, Huang H-Q, Xu S-W, Yu Y, Zhou C-H, et al. Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-κB and MAPK signaling pathways. Inflammation. 2011;34:111–8.

    CAS  PubMed  Google Scholar 

  76. Dai Q, Zhou D, Xu L, Song X. Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug Des Devel Ther. 2018;12:4095–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang G, Xu Z, Huang Y, Duan X, Gong W, Zhang Y, et al. Curcumin protects against collagen-induced arthritis via suppression of BAFF production. J Clin Immunol. 2013;33:550–7.

    CAS  PubMed  Google Scholar 

  78. Park C, Moon D-OO, Choi I-WW, Choi BT, Nam T-JJ, Rhu C-HH, et al. Curcumin induces apoptosis and inhibits prostaglandin E2 production in synovial fibroblasts of patients with rheumatoid arthritis. Int J Mol Med. 2007;20:365–72.

    CAS  PubMed  Google Scholar 

  79. Shakibaei M, Schulze-Tanzil G, John T, Mobasheri A. Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: an immunomorphological study. Ann Anat. 2005;187:487–97.

    CAS  PubMed  Google Scholar 

  80. Mun SH, Kim HS, Kim JW, Ko NY, Kim DK, Lee BY, et al. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCδ/JNK/c-Jun pathway. J Pharmacol Sci. 2009;111:13–21.

    CAS  PubMed  Google Scholar 

  81. Moon D-O, Kim M-O, Choi YH, Park Y-M, Kim G-Y. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model. Int Immunopharmacol. 2010;10:605–10.

    CAS  PubMed  Google Scholar 

  82. Huang G, Yang Y, Xu Z, Zhou P, Gong W, Li Y, et al. Downregulation of B lymphocyte stimulator expression by curcumin in B lymphocyte via suppressing nuclear translocation of NF-kappaB. Eur J Pharmacol. 2011;650:451–7.

    CAS  PubMed  Google Scholar 

  83. Mathy-Hartert M, Jacquemond-Collet I, Priem F, Sanchez C, Lambert C, Henrotin Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflamm Res. 2009;58:899.

    CAS  PubMed  Google Scholar 

  84. Schulze-Tanzil G, Mobasheri A, Sendzik J, John T, Shakibaei M. Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. Ann N Y Acad Sci. 2004;1030:578–86.

    CAS  PubMed  Google Scholar 

  85. Byun E-H, Omura T, Yamada K, Tachibana H. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR2 signaling induced by peptidoglycan through the polyphenol sensing molecule 67-kDa laminin receptor. FEBS Lett. 2011;585:814–20.

    CAS  PubMed  Google Scholar 

  86. Lee J-H, Jin H, Shim H-E, Kim H-N, Ha H, Lee ZH. Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol. 2010;77:17–25.

    CAS  PubMed  Google Scholar 

  87. Lee S-Y, Jung YO, Ryu J-G, Oh H-J, Son H-J, Lee SH, et al. Epigallocatechin-3-gallate ameliorates autoimmune arthritis by reciprocal regulation of T helper-17 regulatory T cells and inhibition of osteoclastogenesis by inhibiting STAT3 signaling. J Leukoc Biol. 2016;100:559–68.

    CAS  PubMed  Google Scholar 

  88. Morinobu A, Biao W, Tanaka S, Horiuchi M, Jun L, Tsuji G, et al. (-)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis Rheum. 2008;58:2012–8.

    CAS  PubMed  Google Scholar 

  89. Singh R, Ahmed S, Malemud CJ, Goldberg VM, Haqqi TM. Epigallocatechin-3-gallate selectively inhibits interleukin-1beta-induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes. J Orthop Res. 2003;21:102–9.

    CAS  PubMed  Google Scholar 

  90. Huang G-S, Tseng C-Y, Lee C-H, Su S-L, Lee H-S. Effects of (-)-epigallocatechin-3-gallate on cyclooxygenase 2, PGE(2), and IL-8 expression induced by IL-1beta in human synovial fibroblasts. Rheumatol Int. 2010;30:1197–203.

    CAS  PubMed  Google Scholar 

  91. Ahmed S, Pakozdi A, Koch AE. Regulation of interleukin-1beta-induced chemokine production and matrix metalloproteinase 2 activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2006;54:2393–401.

    CAS  PubMed  Google Scholar 

  92. Yun H-J, Yoo W-H, Han M-K, Lee Y-R, Kim J-S, Lee S-I. Epigallocatechin-3-gallate suppresses TNF-α -induced production of MMP-1 and -3 in rheumatoid arthritis synovial fibroblasts. Rheumatol Int. 2008;29:23–9.

    CAS  PubMed  Google Scholar 

  93. Singh R, Ahmed S, Islam N, Goldberg VM, Haqqi TM. Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappa. Arthritis Rheum. 2002;46:2079–86.

    CAS  PubMed  Google Scholar 

  94. Singh AK, Umar S, Riegsecker S, Chourasia M, Ahmed S. Regulation of transforming growth factor beta-activated kinase activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts: suppression of K(63)-linked autoubiquitination of tumor necrosis factor receptor-associated Factor 6. Arthritis Rheumatol (Hoboken, NJ). 2016;68:347–58.

    CAS  Google Scholar 

  95. Lin S-KK, Chang H-HH, Chen Y-JJ, Wang C-CC, Galson DL, Hong C-YY, et al. Epigallocatechin-3-gallate diminishes CCL2 expression in human osteoblastic cells via up-regulation of phosphatidylinositol 3-kinase/Akt/Raf-1 interaction: A potential therapeutic benefit for arthritis. Arthritis Rheum. 2008;58:3145–56.

    CAS  PubMed  Google Scholar 

  96. Huh J-E, Jung I-T, Choi J, Baek Y-H, Lee J-D, Park D-S, et al. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-kappaB in collagen-induced arthritis and bone marrow-derived macrophages. Eur J Pharmacol. 2013;698:57–66.

    CAS  PubMed  Google Scholar 

  97. Fu Q, Gao Y, Zhao H, Wang Z, Wang J. Galangin protects human rheumatoid arthritis fibroblast-like synoviocytes via suppression of the NF-κB/NLRP3 pathway. Mol Med Rep. 2018;18:3619–24.

    CAS  PubMed  Google Scholar 

  98. Zhang Y, Dong J, He P, Li W, Zhang Q, Li N, et al. Genistein inhibit cytokines or growth factor-induced proliferation and transformation phenotype in fibroblast-like synoviocytes of rheumatoid arthritis. Inflammation. 2012;35:377–87.

    CAS  PubMed  Google Scholar 

  99. Li JJ, Li JJ, Yue Y, Hu Y, Cheng W, Liu R, et al. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor κB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells. Drug Des Devel Ther. 2014;8:315–23.

    PubMed  PubMed Central  Google Scholar 

  100. Liu F-C, Wang C-C, Lu J-W, Lee C-H, Chen S-C, Ho Y-J, et al. Chondroprotective effects of genistein against osteoarthritis induced joint inflammation. Nutrients. 2019;11:1180.

    CAS  PubMed Central  Google Scholar 

  101. Yoon HY, Lee EG, Lee H, Cho IJ, Choi YJ, Sung MS, et al. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. Int J Mol Med. 2013;32:971–7.

    CAS  PubMed  Google Scholar 

  102. Pan D, Li N, Liu Y, Xu Q, Liu Q, You Y, et al. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int Immunopharmacol. 2018;55:174–82.

    CAS  PubMed  Google Scholar 

  103. Zhuang Z, Ye G, Huang B. Kaempferol alleviates the interleukin-1β-induced inflammation in rat osteoarthritis chondrocytes via suppression of NF-κB. Med Sci Monit. 2017;23:3925–31.

    PubMed  PubMed Central  Google Scholar 

  104. Ansari M, Neha KH. Quercetin alleviate oxidative stress and inflammation through upregulation of antioxidant machinery and down- regulation of COX2 and NF-κB expression in collagen induced rheumatoid arthritis. Int J Drug Dev Res. 2014;6:215–30.

    Google Scholar 

  105. Guazelli CFS, Staurengo-Ferrari L, Zarpelon AC, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Vicentini FTMC, et al. Quercetin attenuates zymosan-induced arthritis in mice. Biomed Pharmacother. 2018;102:175–84.

    CAS  PubMed  Google Scholar 

  106. Xiao P, Hao Y, Zhu X, Wu X. p53 contributes to quercetin-induced apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation. 2013;36:272–8.

    CAS  PubMed  Google Scholar 

  107. Haleagrahara N, Miranda-Hernandez S, Alim MA, Hayes L, Bird G, Ketheesan N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed Pharmacother. 2017;90:38–46.

    CAS  PubMed  Google Scholar 

  108. Yang Y, Zhang X, Xu M, Wu X, Zhao F, Zhao C. Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of Heme Oxygenase 1-mediated anti-inflammatory effect. Int Immunopharmacol. 2018;54:153–62.

    CAS  PubMed  Google Scholar 

  109. Kim H-R, Kim B-M, Won J-Y, Lee K-A, Ko HM, Kang YS, et al. Quercetin, a plant polyphenol, has potential for the prevention of bone destruction in rheumatoid arthritis. J Med Food. 2018;22:152–61.

    PubMed  Google Scholar 

  110. Yamaguchi M, Weitzmann MN. Quercetin, a potent suppressor of NF-kappaB and Smad activation in osteoblasts. Int J Mol Med. 2011;28:521–5.

    CAS  PubMed  Google Scholar 

  111. Javadi F, Ahmadzadeh A, Eghtesadi S, Aryaeian N, Zabihiyeganeh M, Rahimi Foroushani A, et al. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: a double-blind, randomized controlled trial. J Am Coll Nutr. 2017;36:9–15.

    CAS  PubMed  Google Scholar 

  112. Corrêa MG, Pires PR, Ribeiro FV, Pimentel SP, Cirano FR, Napimoga MH, et al. Systemic treatment with resveratrol reduces the progression of experimental periodontitis and arthritis in rats. PLoS ONE. 2018;13:e0204414.

    PubMed  PubMed Central  Google Scholar 

  113. Xuzhu G, Komai-Koma M, Leung BP, Howe HS, McSharry C, McInnes IB, et al. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann Rheum Dis. 2012;71:129–35.

    PubMed  Google Scholar 

  114. Oz B, Yildirim A, Yolbas S, Celik ZB, Etem EO, Deniz G, et al. Resveratrol inhibits Src tyrosine kinase, STAT3, and Wnt signaling pathway in collagen induced arthritis model. BioFactors. 2019;45:69–74.

    CAS  PubMed  Google Scholar 

  115. Riveiro-Naveira RR, Valcárcel-Ares MN, Almonte-Becerril M, Vaamonde-García C, Loureiro J, Hermida-Carballo L, et al. Resveratrol lowers synovial hyperplasia, inflammatory markers and oxidative damage in an acute antigen-induced arthritis model. Rheumatology. 2016;55:1889–900.

    CAS  PubMed  Google Scholar 

  116. Lomholt S, Mellemkjaer A, Iversen MB, Pedersen SB, Kragstrup TW. Resveratrol displays anti-inflammatory properties in an ex vivo model of immune mediated inflammatory arthritis. BMC Rheumatol. 2018;2:27.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tian J, Chen JW, Gao JS, Li L, Xie X. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway. Rheumatol Int. 2013;33:1829–35.

    CAS  PubMed  Google Scholar 

  118. Nakayama H, Yaguchi T, Yoshiya S, Nishizaki T. Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent manner. Rheumatol Int. 2012;32:151–7.

    CAS  PubMed  Google Scholar 

  119. Zhu X, Liu Q, Wang M, Liang M, Yang X, Xu X, et al. Activation of sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts. PLoS ONE. 2011;6:e27081.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu C, Zhang Y, Kong X, Zhu L, Pang J, Xu Y, et al. Triptolide prevents bone destruction in the collagen-induced arthritis model of rheumatoid arthritis by targeting RANKL/RANK/OPG signal pathway. Evid Based Compl Altern Med. 2013;2013:626038.

    Google Scholar 

  121. Kong X, Zhang Y, Liu C, Guo W, Li X, Su X, et al. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade. PLoS ONE. 2013;8:e77513.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gong Y, Huang X, Wang D, Li M, Liu Z. Triptolide protects bone against destruction by targeting RANKL-mediated ERK/AKT signalling pathway in the collagen-induced rheumatoid arthritis. Biomed Res. 2017;28:4111–6.

    CAS  Google Scholar 

  123. Wang S, Liu Z, Wang J, Wang Y, Liu J, Ji X, et al. The triptolide-induced apoptosis of osteoclast precursor by degradation of cIAP2 and treatment of rheumatoid arthritis of TNF-transgenic mice. Phyther Res. 2019;33:342–9.

    CAS  Google Scholar 

  124. Wang S, Zuo S, Liu Z, Ji X, Yao Z, Wang X. Study on the efficacy and mechanism of triptolide on treating TNF transgenic mice with rheumatoid arthritis. Biomed Pharmacother. 2018;106:813–20.

    CAS  PubMed  Google Scholar 

  125. Shenghao T, Yonghong H, Keqin Z, Mingmin Z, Xianyang L, Weichen Z. Effects of triptolide on the expression and activity of NF-KB in synovium of collagen-induced arthritis rats. J Huazhong Univ Sci Technol. 2005;25:543–5.

    Google Scholar 

  126. Lin N, Liu C, Xiao C, Jia H, Imada K, Wu H, et al. Triptolide, a diterpenoid triepoxide, suppresses inflammation and cartilage destruction in collagen-induced arthritis mice. Biochem Pharmacol. 2007;73:136–46.

    CAS  PubMed  Google Scholar 

  127. Rifaii M. Andrographolide ameliorate rheumatoid arthritis by promoting the development of regulatory T Cells. J Trop Life Sci. 2010;1:5–8.

    Google Scholar 

  128. Cascão R, Vidal B, Raquel H, Neves-Costa A, Figueiredo N, Gupta V, et al. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun Rev. 2012;11:856–62.

    PubMed  PubMed Central  Google Scholar 

  129. Moon D-O, Kim M-O, Choi YH, Park Y-M, Kim G-Y. Curcumin attenuates inflammatory response in IL-1β-induced human synovial fibroblasts and collagen-induced arthritis in mouse model. Int Immunopharmacol. 2010;10:605–10.

    CAS  PubMed  Google Scholar 

  130. Akhtar N, Haqqi TM. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Res Ther. 2011;13:R93.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Huang G-S, Tseng C-Y, Lee C-H, Su S-L, Lee H-S. Effects of (−)-epigallocatechin-3-gallate on cyclooxygenase 2, PGE2, and IL-8 expression induced by IL-1β in human synovial fibroblasts. Rheumatol Int. 2010;30:1197–203.

    CAS  PubMed  Google Scholar 

  132. Zou Y, Hu W. Investigation of gene expression profiles in a rat adjuvant arthritis model suggests an effective role of triptolide via PI3K-AKT signaling. Exp Ther Med. 2019. https://doi.org/10.3892/etm.2019.7425.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Xiao C, Zhou J, He Y, Jia H, Zhao L, Zhao N, et al. Effects of triptolide from Radix Tripterygium wilfordii (Leigongteng) on cartilage cytokines and transcription factor NF-κB: a study on induced arthritis in rats. Chin Med. 2009;4:13.

    PubMed  PubMed Central  Google Scholar 

  134. Lu Y, Wang W-J, Leng J-H, Cheng L-F, Feng L, Yao H-P. Inhibitory effect of triptolide on interleukin-18 and its receptor in rheumatoid arthritis synovial fibroblasts. Inflamm Res. 2008;57:260–5.

    CAS  PubMed  Google Scholar 

  135. Fan D, He X, Bian Y, Guo Q, Zheng K, Zhao Y, et al. Triptolide modulates TREM-1 signal pathway to inhibit the inflammatory response in rheumatoid arthritis. Int J Mol Sci. 2016;57:260–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Senthamil Selvan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasakthi, P., Sanmuga Priya, E. & Senthamil Selvan, P. Molecular insights into phytochemicals exhibiting anti-arthritic activity: systematic review. Inflamm. Res. 70, 665–685 (2021). https://doi.org/10.1007/s00011-021-01471-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01471-0

Keywords

Navigation