Skip to main content
Log in

A New Approach in Comparison and Evaluation of the Overall Accuracy of Six Soil-Water Retention Models Using Statistical Benchmarks and Fuzzy Method

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

In this research, six samples of valid and widely soil-water retention curve (SWRC) estimation models, including van Genuchten, Brooks and Corey, Fredlund and Xing, Durner, Kosugi, and Seki were studied. To realize this approach, in the first step, the accuracy of each model was calculated using ten statistical benchmarks, and then the numbers obtained from the fitting accuracy were standardized based on each benchmark by the standard fuzzy method so that all of them had a similar scale. Finally, with the sum of the fuzzy standardized values, an index for each model was obtained as a new index called the Best-Fit Model (BFM) index, which was the basis for comparing and evaluating the overall accuracy of the models in each soil texture. Accordingly, if the BFM index is more extensive and closer to 10, the model is more fitted and gets a higher rating. The superiority of this method to other similar studies is that here, as in the multi-criteria evaluation methods, it can simultaneously assess in terms of different statistical benchmarks and ranking the models according to the diversity in the reaction of each to various benchmarks provided. The results showed that Brooks and Corey model with the lowest and the Durner model with the highest BFM and rank among other models in most soil textures are considered as the weakest and as the most suitable model from the overall accuracy viewpoint of fitting based on the approach used throughout this study, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Y. Abbasi, B. Ghanbarian-Alavijeh, A. M. Liaghat, and M. Shorafa, “Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran,” Pedosphere 21 (2), 230–237 (2011). https://doi.org/10.1016/S1002-0160(11)60122-7

    Article  Google Scholar 

  2. H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Autom. Control 19 (6), 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  3. S. Amanabadi, M. Vazirinia, H. Vereecken, K. A. Asefpour Vakilian, and M. H. Mohammadi, “Comparative study of statistical, numerical and machine learning-based pedotransfer functions of water retention curve with particle size distribution data,” Eurasian Soil Sci. 52, 1555–1571 (2019). https://doi.org/10.1134/S106422931930001X

    Article  Google Scholar 

  4. O. Bahmani and S. Palangi, “Evaluation of pedotransfer functions for estimating the soil water retention points,” Eurasian Soil Sci. 49, 652–660 (2016). https://doi.org/10.1134/S1064229316060028

    Article  Google Scholar 

  5. O. Bahmani and B. Ramazani, “Evaluation of the performance of pedotransfer functions for estimating soil moisture retention curve with SWRC model,” J. Water Res. Agric. 28 (4), 773–785 (2015). https://doi.org/10.22092/jwra.2015.100831

    Article  Google Scholar 

  6. R. H. Brooks and A. T. Corey, “Hydraulic properties of porous media and their relation to drainage design,” Trans. ASAE 7 (1), 26–28 (1964). https://doi.org/10.13031/2013.40684

    Article  Google Scholar 

  7. R. R. Bruce and R. J. Luxmoore, “Water retention: field methods,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (Wiley, Chichester, 1986), pp. 663–686. https://doi.org/10.2136/sssabookser5.1.2ed.c27

  8. G. D. Buchan, K. S. Grewal, and A. B. Robson, “Improved models of particle-size distribution: an illustration of model comparison techniques,” Soil Sci. Soc. Am. J. 57 (4), 901–908 (1993). https://doi.org/10.2136/sssaj1993.03615995005700040004x

    Article  Google Scholar 

  9. A. Buhe, K. Tsuchiya, M. Kaneko, N. Ohtaishi, and M. Halik, “Land cover of oases and forest in Xinjiang, China retrieved from ASTER data,” Adv. Space Res. 39 (1), 39–45 (2007). https://doi.org/10.1016/j.asr.2006.02.056

    Article  Google Scholar 

  10. G. S. Campbell, “A simple method for determining unsaturated conductivity from moisture retention data,” Soil Sci. 117 (6), 311–314 (1974).

    Article  Google Scholar 

  11. P. S. Chavez, G. L. Berlin, and L. B. Sowers, “Statistical method for selecting Landsat MSS,” J. Appl. Photogr. Eng. 8 (1), 23–30 (1982).

    Google Scholar 

  12. J. H. Dane and J. W. Hopmans, “Water retention and storage,” in Methods of Soil Analysis, Part 4: Physical Methods, Ed. by J. H. Dane and G. C. Topp (Soil Science Society of America, Madison, WI, 2002). pp. 1–1692. https://doi.org/10.2136/sssabookser5.4.c25

  13. P. M. Driessen, “The water balance of the soil,” in Modeling of Agricultural Production: Weather, Soils and Crops, Ed. by H. van Keulen and J. Wolf (Wageningen, 1986), pp. 76–116.

    Google Scholar 

  14. W. Durner, “Hydraulic conductivity estimation for soils with heterogeneous pore structure,” Water Resour. Res. 30 (2), 211–223 (1994). https://doi.org/10.1029/93WR02676

    Article  Google Scholar 

  15. D. A. Farrell and W. E. Larson, “Modeling the pore structure of porous media,” Water Resour. Res. 8 (3), 699–706 (1972). https://doi.org/10.1029/WR008i003p00699

    Article  Google Scholar 

  16. B. H. B. Ferreira, B. R. Oliveira, S. W. de Oliveira, F. F. G. Chaves, and C. F. G. Bezerra, “Empirical models for estimating water retention curves in soil in Janaúba-MG, Brazil,” Idesia (Arica) 30, 71–76 (2012). https://doi.org/10.1590/S0103-90162000000100031

    Article  Google Scholar 

  17. B. E. Flores, “A pragmatic view of accuracy measurement in forecasting,” Omega 14 (2), 93–98 (1986). https://doi.org/10.1016/0305-0483(86)90013-7

    Article  Google Scholar 

  18. H. R. Fooladmand and S. Hadipour, “Evaluation of parametric pedotransfer functions for estimating soil water characteristic curve in Fars province,” J. Water Soil Sci. 15 (58), 25–37 (2012).

    Google Scholar 

  19. D. G. Fredlund and A. Xing, “Equations for the soil-water characteristic curve,” Can. Geotech. J. 31 (4), 521–532 (1994). https://doi.org/10.1139/t94-061

    Article  Google Scholar 

  20. B. Ghanbarian-Alavijeh and A. M. Liaghat, “Evaluation of soil texture data for estimating soil water retention curve,” Can. J. Soil Sci. 89 (4), 461–471 (2009). https://doi.org/10.4141/cjss08066

    Article  Google Scholar 

  21. D. Giménez, W. J. Rawls, Y. Pachepsky, and J. P. C. Watt, “Prediction of a pore distribution factor from soil textural and mechanical parameters,” Soil Sci. 166 (2), 79–88 (2001). https://doi.org/10.1097/00010694-200102000-00001

    Article  Google Scholar 

  22. D. C. Hoaglin, “John W. Tukey and data analysis,” Stat. Sci. 18 (3), 311–318 (2003).

    Article  Google Scholar 

  23. M. Jafari and A. Jafari, “Locating an appropriate landfill for rural wastes using the AHP model and GIS software (case study: Mahneshan town),” J. Res. Environ. Health 2 (3), 245–254 (2016). https://doi.org/10.22038/jreh.2016.8080

    Article  Google Scholar 

  24. P. J. Johnson, G. A. Zyvoloski, and P. H. Stauffer, “Impact of a porosity-dependent retention function on simulations of porous flow,” Transp. Porous Media 127, 211–232 (2019). https://doi.org/10.1007/s11242-018-1188-x

    Article  Google Scholar 

  25. H. Khodaverdiloo, M. Homaee, M. Th. van Genuchten, and S. Ghorbani Dashtaki, “Deriving and validating pedotransfer functions for some calcareous soils,” J. Hydrol. 399 (1), 93–99 (2011). https://doi.org/10.1016/j.jhydrol.2010.12.040

    Article  Google Scholar 

  26. S. Kienast-Brown and J. L. Boettinger, “Applying the optimum index factor to multiple data types in soil survey,” in Digital Soil Mapping: Bridging Research, Environmental Application, and Operation, Ed. by J. L. Boettinger, et al. (Springer-Verlag, Dordrecht, 2010), pp. 385–398. https://doi.org/10.1107/978-90-481-8863-5

  27. K. Kosugi, “Lognormal distribution model for unsaturated soil hydraulic properties,” Water Resour. Res. 32 (9), 2697–2703 (1996). https://doi.org/10.1029/96WR01776

    Article  Google Scholar 

  28. X. Kuang and J. J. Jiao, “A new equation for the soil water retention curve,” Eur. J. Soil Sci. 65 (4), 584–593 (2014). https://doi.org/10.1111/ejss.12152

    Article  Google Scholar 

  29. E. L. Lehmann and G. Casella, “Average risk optimality,” in Theory of Point Estimation, Ed. by E. L. Lehmann and G. Casella (Springer-Verlag, New York, 1998), pp. 225–307. https://doi.org/10.1109/TAC.1974.1100705

  30. S. M. Lewis, G. Fitts, M. Kelly, and L. A. Dale, “Fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the United States,” Comput. Electron. Agric. 103, 39–47 (2014). https://doi.org/10.1016/j.compag.2014.02.006

    Article  Google Scholar 

  31. P. L. Libardi, K. Reichardt, D. R. Nielsen, and J. W. Biggar, “Simple field methods for estimating soil hydraulic conductivity,” Soil Sci. Soc. Am. J. 44 (1), 3–7 (1980). https://doi.org/10.2136/sssaj1980.03615995004400010001x

    Article  Google Scholar 

  32. C. Liu, B. Li, F. Tong, and P. Tan, “Determination of soil-water retention curve from a transient air-water two-phase outflow experiment,” Bull. Eng. Geol. Environ. 79 (4), 2109–2118 (2020). https://doi.org/10.1007/s10064-019-01662-4

    Article  Google Scholar 

  33. C. Manyame, C. L. Morgan, J. L. Heilman, D. Fatondji, B. Gerard, and W. A. Payne, “Modeling hydraulic properties of sandy soils of Niger using pedotransfer functions,” Geoderma 141 (3), 407–415 (2007). https://doi.org/10.1016/j.geoderma.2007.07.006

    Article  Google Scholar 

  34. A. Mohebbi Tafreshi, G. Mohebbi Tafreshi, and M. H. Bijeh Keshavarzi, “Qualitative zoning of groundwater to assessment suitable drinking water using fuzzy logic spatial modeling via GIS,” Water Environ. J. 32 (4), 607–620 (2018). https://doi.org/10.1111/wej.12358

    Article  Google Scholar 

  35. G. Mohebbi Tafreshi, M. Nakhaei, and R. Lak, “Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran,” GeoJournal, 1–21 (2019). https://doi.org/10.1007/s10708-019-10129-8

  36. E. Nabizadeh and H. Beigi Harchegani, “The fitting quality of several water retention models in soil samples from Lordegan, Charmahal-va-Bakhtiari,” J. Water Soil 25 (3), 634–645 (2011). https://doi.org/10.22067/jsw.v0i0.9698

    Article  Google Scholar 

  37. M. Nakhaei and J. Šimůnek, “Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code,” J. Hydrol. Hydromech. 62 (1), 7 (2014). https://doi.org/10.2478/johh-2014-0008

    Article  Google Scholar 

  38. M. Nakhaei and V. Amiri, “Estimating the unsaturated soil hydraulic properties from a redistribution experiment: application to synthetic data,” J. Porous Media 18, 717–729 (2015).

    Article  Google Scholar 

  39. J. E. Nash and J. V. Sutcliffe, “River flow forecasting through conceptual models, Part I—A discussion of principles,” J. Hydrol. 10 (3), 282–290 (1970). https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  40. N. G. Patil, D. K. Pal, C. Mandal, and D. K. Mandal, “Soil water retention characteristics of vertisols and pedotransfer functions based on nearest neighbor and neural networks approaches to estimate AWC,” J. Irrig. Drain Eng. 138 (2), 177–184 (2012). https://doi.org/10.1061/(ASCE)IR.1943-4774.0000375

    Article  Google Scholar 

  41. W. Rawls and D. Brakensiek, “Estimating soil water retention from soil properties [Rainfall-runoff modeling],” J. Irrig. Drain Eng. 108 (2), 166–171 (1982).

    Article  Google Scholar 

  42. A.S. Rogowski, “Watershed physics: model of the soil moisture,” Water Resour. Res. 7 (6), 1575–1582 (1971). https://doi.org/10.1029/WR007i006p01575

    Article  Google Scholar 

  43. C. M. Rubio, P. Llorens, and F. Gallart, “Uncertainty and efficiency of pedotransfer functions for estimating water retention characteristics of soils,” Eur. J. Soil Sci. 59 (2), 339–347 (2008). https://doi.org/10.1111/j.1365-2389.2007.01002.x

    Article  Google Scholar 

  44. K. E. Saxton, W. J. Rawls, J. S. Romberger, and R. I. Papendick, “Estimating generalized soil-water characteristics from texture,” Soil Sci. Soc. Am. J. 50 (4), 1031–1036 (1986). https://doi.org/10.2136/sssaj1986.03615995005000040039x

    Article  Google Scholar 

  45. H. Schelle, L. Heise, K. Jänicke, and W. Durner, “Water retention characteristics of soils over the whole moisture range: a comparison of laboratory methods,” Eur. J. Soil Sci. 64 (6), 814–821 (2013). https://doi.org/10.1111/ejss.12108

    Article  Google Scholar 

  46. K. Seki, “SWRC fit—a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure,” Hydrol. Earth Syst. Sci, 2007, 407–437 (2007). https://doi.org/10.5194/hessd-4-407-2007

    Article  Google Scholar 

  47. H. Shahnazari, L. Laloui, S. Kouzegaran, and Y. Jafarian, “Prediction and experimental evaluation of soil-water retention behavior of skeletal calcareous soils,” Bull. Eng. Geol. Environ. 79, 2395–2410 (2020). https://doi.org/10.1007/s10064-019-01695-9

    Article  Google Scholar 

  48. C. Simmons, D. Nielsen, and J. Biggar, “Scaling of field-measured soil-water properties: I. Methodology,” Hilgardia 47 (4), 75–102 (1979). https://doi.org/10.3733/hilg.v47n04p075

    Article  Google Scholar 

  49. R. Solone, M. Bittelli, F. Tomei, and F. Morari, “Errors in water retention curves determined with pressure plates: effects on the soil water balance,” J. Hydrol. 470–471, 65–74 (2012). https://doi.org/10.1016/j.jhydrol.2012.08.017

    Article  Google Scholar 

  50. D. A. Sun, G. You, Z. Annan, and S. Daichao, “Soil–water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay,” Bull. Eng. Geol. Environ. 75 (2), 781–791 (2016). https://doi.org/10.1007/s10064-015-0765-2

    Article  Google Scholar 

  51. F. Tan, W. H. Zhou, and K. V. Yuen, “Modeling the soil water retention properties of same-textured soils with different initial void ratios,” J. Hydrol. 542, 731–743 (2016). https://doi.org/10.1016/j.jhydrol.2016.09.045

    Article  Google Scholar 

  52. F. Tong, L. Jing, and T. Bin, “A water retention curve model for coupled thermo-hydro mechanical processes of geological porous media,” Transp. Porous Media 91, 509–530 (2012). https://doi.org/10.1007/s11242-011-9857-z

    Article  Google Scholar 

  53. M. Th. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J. 44 (5), 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  54. B. Wagner, et al., “Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set,” Geoderma 102 (3), 275–297 (2001). https://doi.org/10.1016/S0016-7061(01)00037-4

    Article  Google Scholar 

  55. Y. Wei, Y. Wang, J. Han, M. Cai, K. Zhu, and Q. Wang, “Analysis of water retention characteristics of oil-polluted earthy materials with different textures based on van Genuchten model,” J. Soils Sediments 19 (1), 373–380 (2019). https://doi.org/10.1007/s11368-018-2026-z

    Article  Google Scholar 

  56. R. J. Yao, J. S. Yang, D. H. Wu, F. R. Li, P. Gao, and X. P. Wang, “Evaluation of pedotransfer functions for estimating saturated hydraulic conductivity in coastal salt-affected mud farmland,” J. Soils Sediments 15 (4), 902–916 (2015). https://doi.org/10.1007/s11368-014-1055-5

    Article  Google Scholar 

  57. L. A. Zadeh, “Fuzzy sets,” Inf. Control 8 (353), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Kharazmi University for providing the necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Mohebbi Tafreshi.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Nakhaei, Tafreshi, A.M. & Tafreshi, G.M. A New Approach in Comparison and Evaluation of the Overall Accuracy of Six Soil-Water Retention Models Using Statistical Benchmarks and Fuzzy Method. Eurasian Soil Sc. 54, 716–728 (2021). https://doi.org/10.1134/S1064229321050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321050136

Keywords:

Navigation