Skip to main content
Log in

Hydrochemical evolution of the Reocín mine filling water (Spain)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Reocín mine is located in Cantabrian region, in northern Spain. Its exploitation ended in 2003 due to the exhaustion of its reserves. In November 2004, the controlled flooding of the openpit began. During this process, both the qualities of stored water and piezometric levels have been monitored to control the possible water detraction from the Saja-Besaya hydrographic system. This paper deals with the water chemistry analysis of the pit lake surface, as well as the different conditions of the area. Geological and hydrogeological contexts play an important role in the lake water chemistry. The lake water quality continues improving. The sulphate content and zinc concentrations are already below the permitted pouring limits. Three factors are distinguished: the washing of the mine shafts is completed; the water supply from the aquifer contributes to the dissolution of the salt content and the bedrock, and dolomite, which neutralizes acid waters and improves the water quality during the flooding process with a pH value of 8. Owing to these conditions, the stored water meets the necessary conditions for discharge and provides the opportunities to use it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Akburak, S., Kul, A. A., Makineci, E., Ozdemir, E., Aktas, N. K., Gurbey, A. P., Yurtseven, H., Kose, M., & Akgun, T. (2020). Chemical water parameters of end pit lakes in abandoned coal mines. Arabian Journal of Geoscience, 13(13), 1–12.

    Article  Google Scholar 

  • APHA (1998). Standard methods for the examination of water and wastewater. 20th edit, American Public Health Assoc, American Water Works Assoc, Water Environment Federation, Washington DC.

  • Axler, R., Henneck, J., & McDonald, M. (2004). Mine Pit Aquaculture in Minnesota: Perspectives on the Environmental and Regulatory Issues, 1988–1999. In Pit Lakes 2004 Conference, November pp. 16–18.

  • Bachmann, T. M., Friese, K., & Zachmann, D. W. (2001). Redox and pH conditions in the water column and in the sediments of an acidic mining lake. Journal of Geochemical Exploration, 73(2), 75–86.

    Article  CAS  Google Scholar 

  • Baeten, J., Langston, N., & Lafreniere, D. (2018). A spatial evaluation of historic iron mining impacts on current impaired waters in Lake Superior’s Mesabi Range. Ambio, 47(2), 231–244.

    Article  Google Scholar 

  • Banks, D., Steven, J., Berry, J., Burnside, N., & Boyce, A. (2019). A combined pumping test and heat extraction/recirculation trial in an abandoned haematite ore mine shaft, Egremont, Cumbria. UK. Sustainable Water Resources Management, 5(1), 51–69.

    Article  Google Scholar 

  • Belkhiri, L., Mouni, L., & Tiri, A. (2012). Water–rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environmental Geochemistry and Health, 34(1), 1–13.

    Article  CAS  Google Scholar 

  • Blanchette, M. L., & Lund, M. A. (2016). Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Current Opinion in Environmental Sustainability, 23, 28–34.

    Article  Google Scholar 

  • Castendyk, D. N., & Webster-Brown, J. G. (2007). Sensitivity analyses in pit lake prediction, Martha mine, New Zealand 2: geochemistry, water–rock reactions, and surface adsorption. Chemical Geology, 244(1–2), 56–73.

    Article  CAS  Google Scholar 

  • Castro, J. M., & Moore, J. N. (2000). Pit lakes: their characteristics and the potential for their remediation. Environmental Geology, 39(11), 1254–1260.

    Article  CAS  Google Scholar 

  • Delgado, J., Juncosa, R., Vazquez, A., Falcón, I., Canal, J., Hernández, H., & Delgado, J. L. (2008). Hydrochemical characteristics of the natural waters associated with the flooding of the Meirama open pit (A Coruña, NW Spain). Mineralogical Magazine, 72(1), 399–403.

    Article  CAS  Google Scholar 

  • Delgado-Martin, J., Juncosa-Rivera, R., Falcón-Suárez, I., et al. (2013). Four years of continuous monitoring of the Meirama end-pit lake and its impact in the definition of future uses. Environmental Science and Pollution Research, 20(11), 7520–7533.

    Article  CAS  Google Scholar 

  • Denimal, S., Bertrand, C., Mudry, J., Paquette, Y., Hochart, M., & Steinmann, M. (2005). Evolution of the aqueous geochemistry of mine pit lakes—Blanzy–Montceau-les-Mines coal basin Massif Central, France: origin of sulfate contents; effects of stratification on water quality. Applied Geochemistry, 20(5), 825–839.

    Article  CAS  Google Scholar 

  • Doupé, R. G., & Lymbery, A. J. (2005). Environmental risks associated with beneficial end uses of mine lakes in southwestern Australia. Mine Water and the Environment, 24(3), 134–138.

    Article  Google Scholar 

  • Eang, K. E., Igarashi, T., Kondo, M., Nakatani, T., Tabelin, C. B., & Fujinaga, R. (2018). Groundwater monitoring of an open-pit limestone quarry: Water-rock interaction and mixing estimation within the rock layers by geochemical and statistical analyses. International Journal of Mining Science and Technology, 28(6), 849–857.

    Article  CAS  Google Scholar 

  • Elango, L., & Kannan, R. (2007). Rock–water interaction and its control on chemical composition of groundwater. Developments in Environmental Science, 5, 229–243.

    Article  CAS  Google Scholar 

  • Erdogan, I. G., Fosso-Kankeu, E., Ntwampe, S. K. O., Waanders, F., & Hoth, N. (2020). Seasonal variation of hydrochemical characteristics of open-pit groundwater near a closed metalliferous mine in O’Kiep, Namaqualand Region, South Africa. Environmental Earth Sciences, 79(5), 1–15.

    Article  Google Scholar 

  • Eyankware, M. O., Nnajieze, V. S., & Aleke, C. G. (2018). Geochemical assessment of water quality for irrigation in abandoned limestone quarry pit at Nkalagu area, southern Benue Trough, Nigeria. Environmental Earth Sciences, 77(3), 66.

    Article  Google Scholar 

  • Fernández, G., Reinoso, J., & Fernández, G. (1992). El karst de la mina de Reocín: Un problema hidrológico. Jornadas sobre tecnología del agua en la minería. In Jornadas sobre tecnología del agua en la minería (pp. 31–54). IGME: Madrid, Spain.

  • Fernández, J. R., Alonso, J. A., & Loredo, J. L. (2008). La inundación de la mina de Reocín. In J. A. López-Geta, J. Loredo, L. Fernández, & J. M. Pernía (Eds.), Investigación y gestión de los recursos del subsuelo (pp. 389–404). IGME.

    Google Scholar 

  • Gámez, O. R., Laffont-Schwob, I., Prudent, P., et al. (2019). Assessment of water quality from the Blue Lagoon of El Cobre mine in Santiago de Cuba: a preliminary study for water reuse. Environmental Science and Pollution Research, 26(16), 16366–16377.

    Article  Google Scholar 

  • Gammons, C. H., Pape, B. L., Parker, S. R., Poulson, S. R., & Blank, C. E. (2013). Geochemistry, water balance, and stable isotopes of a “clean” pit lake at an abandoned tungsten mine, Montana, USA. Applied Geochemistry, 36, 57–69.

    Article  CAS  Google Scholar 

  • Hattingh, R. (2018). Framework to guide mine-related land use planning towards optimisation of the coal mining rehabilitated landscape (Doctoral dissertation, University of Pretoria).

  • Hinwood, A., Heyworth, J., Tanner, H., & Mccullough, C. D. (2012). Recreational use of acidic pit lakes—human health considerations for post closure planning. Journal of Water Resource and Protection, 4(12), 1061–1070.

    Article  Google Scholar 

  • Islam, R., Faysal, M. S., Amin, R., Juliana, F. M., Islam, M. J., Alam, J., & Asaduzzaman, M. (2017). Assessment of pH and Total Dissolved Substances (TDS) in the commercially available bottled drinking water. Journal of Nursing and Health Sciences, 6(5), 35–40.

    Google Scholar 

  • Izabela-Maria, A., & Florea, A. (2018). Artificial lakes in former lignite open-pits and their utility in agriculture and economy. Research Journal of Agricultural Science50(4).

  • Johnson, D. B., & Hallberg, K. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1–2), 3–14.

    Article  CAS  Google Scholar 

  • Juncosa, R., Delgado, J., Padilla, F., et al. (2016). Improvements in Mero River Basin Water Supply Regulation Through Integration of a Mining Pit Lake as a Water Supply Source. Mine Water and the Environment, 35(3), 389–397.

    Article  CAS  Google Scholar 

  • Juncosa, R., Delgado, J., Cereijo, J. L., García, D., & Muñoz, A. (2018). Comparative hydrochemical analysis of the formation of the mining lakes of As Pontes and Meirama (Spain). Environmental Monitoring and Assessment, 190(9), 526.

    Article  Google Scholar 

  • Juncosa, R., Delgado, J., Cereijo, J. L., & Muñoz, A. (2019). Hydrochemical evolution of the filling of the Mining Lake of As Pontes (Spain). Mine Water and the Environment, 38(3), 556–565.

    Article  Google Scholar 

  • Kalin, M., Fyson, A., & Wheeler, W. N. (2006). The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Science of the Total Environment, 366(2–3), 395–408.

    Article  CAS  Google Scholar 

  • Loredo, J., Ordóñez, A., Jardón, S., & Álvarez, R. (2011). Mine water as geothermal resource in Asturian coal mining basins (NW Spain). In R. T. Rüde, A. Freund, & C. Wolkersdorfer (Eds.), Proceedings IMWA congress 2011 Mine water—managing the challenges (pp. 177–181). Aachen.

    Google Scholar 

  • Luís, A. T., Teixeira, P., Almeida, S. F. P., Ector, L., Matos, J. X., & Da Silva, E. F. (2009). Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of Aljustrel mining area (Portugal). Water, Air, and Soil Pollution, 200(1–4), 147–167.

    Article  Google Scholar 

  • Mallo, J. C., De Marco, S. G., Bazzini, S. M., et al. (2010). Aquaculture: an Alternative Option for the Rehabilitation of Old Mine Pits in the Pampasian Region, Southeast of Buenos Aires, Argentina. Mine Water and the Environment, 29(4), 285–293.

    Article  CAS  Google Scholar 

  • Malolepszy, Z., Demollin-Schneiders, E., & Bowers, D. (2005). Potential use of geothermal mine waters in Europe. In: Proceedings world geothermal congress. Antalya, Turkey, pp 24–29.

  • McCullough, C. D., & Lund, M. A. (2006). Opportunities for sustainable mining pit lakes in Australia. Mine Water and the Environment, 25(3), 220–226.

    Article  Google Scholar 

  • Mhlongo, S. E., & Amponsah-Dacosta, F. (2015). Rehabilitation of Abandoned open Excavation for Beneficial use of the pit Lake at Nyala Magnesite Mine. International Journal of Environmental Research9(1).

  • Miller, D. (2008). Using aquaculture as a post-mining land use in West Virginia. Mine Water and the Environment, 27(2), 122–126.

    Article  CAS  Google Scholar 

  • Miller, W. B., Lyons, A., & Davis, A. (1996). Understanding the water quality of pit lakes. Environmental Science and Technology, 30(3), 118A-123A.

    Article  CAS  Google Scholar 

  • Ordoñez, A., Jardón, S., Álvarez, R., Andrés, C., & Pendás, F. (2012). Hydrogeological definition and applicability of abandoned coal mines as water reservoirs. Journal of Environmental Monitoring, 14(8), 2127–2136.

    Article  Google Scholar 

  • Pearce J., Weber P., Pearce S., & Scott, P. (2016). Acid and metalliferous drainage contaminant load prediction for operational or legacy mines at closure. In Proceedings of the 11th International Conference on Mine Closure (pp. 663–676). Australian Centre for Geomechanics.

  • Raymond, J., & Therrien, R. (2014). Optimizing the design of a geothermal district heating and cooling system located at a flooded mine in Canada. Hydrogeology Journal, 22(1), 217–231.

    Article  Google Scholar 

  • Salmon, S. U., Hipsey, M. R., Wake, G. W., Ivey, G. N., & Oldham, C. E. (2017). Quantifying lake water quality evolution: Coupled geochemistry, hydrodynamics, and aquatic ecology in an acidic pit lake. Environmental Science & Technology, 51(17), 9864–9875.

    Article  CAS  Google Scholar 

  • Schultze, M., Pokrandt, K. H., & Hille, W. (2010). Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica, 40(2), 148–155.

    Article  Google Scholar 

  • Shevenell, L. A. (2000). Water quality in pit lakes in disseminated gold deposits compared to two natural, terminal lakes in Nevada. Environmental Geology, 39(7), 807–815.

    Article  CAS  Google Scholar 

  • Sienkiewicz, E., & Gąsiorowski, M. (2016). The evolution of a mining lake-from acidity to natural neutralization. Science of the Total Environment, 557, 343–354.

    Article  Google Scholar 

  • Symons, D. T., Lewchuk, M. T., Kawasaki, K., Velasco, F., & Leach, D. L. (2009). The Reocín zinc–lead deposit, Spain: paleomagnetic dating of a late Tertiary ore body. Mineralium Deposita, 44(8), 867.

    Article  CAS  Google Scholar 

  • Vandersluis, G. D., Straskraba, V., & Effner, S. A. (1995). Hydrogeological and geochemical aspects of lakes forming in abandoned open pit mines. Water Resources at Risk, 162, 177.

    Google Scholar 

  • Velasco, F., Herrero, J. M., Yusta, I., Alonso, J. A., Seebold, I., & Leach, D. (2003). Geology and geochemistry of the Reocín zinc-lead deposit, Basque-Cantabrian basin, Northern Spain. Northern Spain. Economic Geology, 98(7), 1371–1396.

    Article  CAS  Google Scholar 

  • Villain, L., Alakangas, L., & Öhlander, B. (2013). The effects of backfilling and sealing the waste rock on water quality at the Kimheden open-pit mine, northern Sweden. Journal of Geochemical Exploration, 134, 99–110.

    Article  CAS  Google Scholar 

  • Watzlaf, G. R., & Ackman, T. E. (2006). Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water and the Environment, 25(1), 1–14.

    Article  CAS  Google Scholar 

  • Werner, F., Bilek, F., & Luckner, L. (2001a). Impact of regional groundwater flow on the water quality of an old post-mining lake. Ecological Engineering, 17(2–3), 133–142.

    Article  Google Scholar 

  • Werner, F., Bilek, F., & Luckner, L. (2001b). Implications of predicted hydrologic changes on Lake Senftenberg as calculated using water and reactive mass budgets. Mine Water and the Environment, 20(3), 129–139.

    Article  Google Scholar 

  • Williams, M.S., Oyedotun, T.D.T., & Simmons, D.A. (2019). Assessment of water quality of lakes used for recreational purposes in abandoned mines of Linden, Guyana. Geology, Ecology and Lanscapes, 1–13.

Download references

Acknowledgements

The authors thank Asturiana de Zinc SA, belonging to Xstrata international mining group, for contributing invaluable information to this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Noemí Barral: Conception/Research design/Acquisition of data/Analysis and interpretation of data/Drafting the manuscript. Raúl Husillos: Conception/ Research design/Acquisition of data/Drafting the manuscript. Elena Castillo: Conception/ Research design/Acquisition of data/Drafting the manuscript. Manuel Cánovas: Analysis and interpretation of data/Drafting the manuscript. Elizabeth Lam: Analysis and interpretation of data/Drafting the manuscript. All the authors approved the final version to be submitted.

Corresponding author

Correspondence to Noemí Barral.

Ethics declarations

Animal research

Since this study did not involve animal research, no consents were required to participate and publish data belonging to animals. Therefore, the inclusion of these forms and other ethical issues related to the publication of this type of data do not apply to this study.

Consent to Participate

Yes.

Consent to Publish

All authors agreed to publish the manuscript respecting the current sequence of authors listed. Likewise, all authors agreed to designate Noemí Barral as the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barral, N., Husillos, R., Castillo, E. et al. Hydrochemical evolution of the Reocín mine filling water (Spain). Environ Geochem Health 43, 5119–5134 (2021). https://doi.org/10.1007/s10653-021-00972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00972-5

Keywords

Navigation