Skip to main content
Log in

Comparative study of the electrical performance of superhydrophobic and hydrophilic tubular and plane insulating barriers under DC voltage

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

A device, comprising a system of rod-plane electrodes with a horizontal axis, enveloping tubular glass barriers or vertical planes as well as supports for their attachment, has been made. The tubular barriers were coated with a thin layer of either superhydrophobic soot or hydrophobic silicone. The electrical performance of the tubular soot barrier has been determined experimentally based on its size and the length of the interelectrode air gap under DC voltage and any atmosphere. Its insulating performance was then compared with that of its tubular glass or silicone counterpart as well as that of the hydrophilic glass plane barrier under the above conditions. The main results obtained show, on the one hand, that under severe pollution conditions, the electrical protection of the rod-plane system by tubular soot barrier is more reliable than that of glass or silicone regardless of the influence’s parameters considered in this investigation. On the other hand, the tubular barrier with superhydrophobic soot is technically more efficient and economically less expensive compared to its hydrophilic plane counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Böhme H, Schwarzer K, (1974) Isolierungen von Mittelspannungsschalt-Anlagen. Elektrie 28 H 11 S: 592–593

  2. Pilling J, (1967) Luftisolierungen mit Isolierstoffbarrieren und -Verkleidungen bei Wechselspannung. Dissertation A, Technische Universität Dresden

  3. Ming L, Leijonand M, Bengston T (1993) Barrier effect in air insulated system under DC voltage. In: 8th international symposium high voltage engineering, paper, vol 43, no 03, pp 65–68

  4. Sellars AG, Mac Gregor SJ (1996) The design of dielectric barriers for HVDC Bushings. IEE Colloquium 008, UK, pp 1–3

  5. Kara A, Kalenderli O, Mardikyan K (2010) DC breakdown voltage characteristics of small air gaps with insulating barriers in non-uniform field. In: IEEE international conference on high voltage engineering and application (ICHVE) New Orleans USA, pp 425–428

  6. Ming Li, Bengston T, Bengston ML (1995) Factors influencing barrier effects in air-gaps. In: Proceedings on 9th ISHVE Austria, pp 1–4

  7. Scolova MV, Zhukov AN (1995) Influence of barrier surface properties on the discharge in a narrow gas gap. In: Proceedings on 9th ISHVE Austria, pp 1–4

  8. Boudissa R, Harid N, Baersch R (2011) Effect of surface condition and isolation mode on the efficiency of a barrier inserted in nonuniform electric field under AC voltage. In: Proceedings on 17th ISHVE

  9. Awad A, Böhme H (1977) Durchschlagspannung inhomogener Funkenstrecken mit verschmutzten Barrieren. Elektrie 31(H1):35–38

    Google Scholar 

  10. Awad M (1975) Durchschlag von inhomogenen Luftfunkenstrecken mit verschmutzten Isolierstoffbarrieren bei Wechsel - und Schaltspannungen. Dissertation A Technische Universität Dresden

  11. Boudissa R, Merabet S, Iouknane S (2013) Effect of isolation mode and surface condition of an insulating barrier on the performance of a non-uniform field electrode system under positive DC voltage. IEEE Trans Dielectr Electr Insul 20(5):1523–1529

    Article  Google Scholar 

  12. Boudissa R, Bayadi A, Baersch R (2014) AC Performance of silicone and glass barriers in clean and polluted atmosphere. Electric Power Syst Res 108(2014):170–177

    Article  Google Scholar 

  13. Belhoul T, Boudissa R, Haim KD (2017) Comparison of the performance of silicone and glass barriers under direct current and very severe conditions of pollution. IEEE Trans Dielectr Electr Insul 24(1):471–482

    Article  Google Scholar 

  14. Hackam R (1999) Outdoor HV composite polymeric insulators. IEEE Trans Dielectr Electr Insul 5:557–5585

    Article  Google Scholar 

  15. Cherney EA, Gorur RS (1999) RTV Silicone Rubber Coatings for outdoor Insulators. IEEE Trans Dielectr Electr Insul 6(5):605–611

    Article  Google Scholar 

  16. Küchler A (2009) Hochspannungstechnik Grundlagen-Technologie-Anwendungen. 3. neu bearbeitete Auflage Springer-Verlag, Berlin

  17. Karady GG (1999) Flashover mechanism of Non-ceramic Insulators. IEEE Trans Dielectr Electr Insul 6(5):718–723

    Article  Google Scholar 

  18. Zhu Y, Haji K, Otsubo Honda M, C and Hayashi N, (2006) Electrohydrodynamic behaviour of water droplet on an electrically stressed hydrophobic surface. J Appl Phys 39:1970–1975

    Google Scholar 

  19. Phillips AJ, Childs DJ, Schneider HM (1999) Aging of non–ceramic Insulator due to corona from water drops. IEEE Trans Power Deliv 14(3):258–263

    Article  Google Scholar 

  20. Rowland SM, Lin FC (2006) Stability of alternating current discharges between water drops on insulation surfaces. J Appl Phys 39:3067–3076

    Google Scholar 

  21. Swift DA, Spellman C, Haddad A (2006) Hydrophobicity Transfer from Silicone Rubber to Adhering Pollutants and its Effect on Insulator Performance. IEEE Trans Dielectr Electr Insul 13(4):820–829

    Article  Google Scholar 

  22. Moreno VM, Gorur RS (1999) AC and DC performance of polymeric housing materials for HV outdoor insulators. IEEE Trans Dielectr Electr Insul 6:342–350

    Article  Google Scholar 

  23. Kumara S, Ma B, Serdyuk YV, Gubanski SM (2012) Surface charge decay on HTV silicone rubber: effect of material treatment by corona discharges. IEEE Trans Dielectr Electr Insul 19:2189–2195

    Article  Google Scholar 

  24. Liu HP, Cash G, Birtwhistle D, George G (2005) Characterization of a severely degraded silicone elastomer HV insulator - an aid to development of lifetime assessment techniques. IEEE Trans Dielectr Electr Insul 12:478–486

    Article  Google Scholar 

  25. Reddy BS, Prasad SD (2016) Corona degradation of the polymer insulator samples under different fog conditions. IEEE Trans Dielectr Electr Insul 23:359–367

    Article  Google Scholar 

  26. Foldes E, Toth A, Kalman E, Fekete E, Tomasovszky-Bobak A (2000) Surface changes of corona-discharge-treated polyethylene films. J Appl Polymer Sci 76:1529–1541

    Article  Google Scholar 

  27. Vas JV, Thomas MJ (2014) Surface degradation of silicone rubber nanocomposites due to DC corona discharge. IEEE Trans Dielectr Electr Insul 21:1175–1182

    Article  Google Scholar 

  28. Swart M, Mallon PE (2009) Hydrophobicity recovery of corona-modified superhydrophobic surfaces produced by the electrospinning of poly(methyl methacrylate)-graft-poly(dimethylsiloxane) hybrid copolymers. Pure Appl Chem 81:495–511

    Article  Google Scholar 

  29. Yan Z, Liang Gao XY, Liu Y (2016) Aging and self-healing properties of superhydrophobic silicone rubber. IEEE Trans Dielectr Electr Insul 23:3531–3538

    Article  Google Scholar 

  30. Li Y, Jin H, Nie S, Zhang P, Gao N (2017) Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface. Appl Phys Lett 110:201602

    Article  Google Scholar 

  31. Li Y, Jin H, Nie S, Tong C, Gao N (2018) Effect of superhydrophobicity on flashover characteristics of silicone rubber under wet conditions. AIP Adv 8:015313

    Article  Google Scholar 

  32. Messad S, Boudissa R, Kornhuber S, Haim KD (2019) Electrical performance of rod plane system with superhydrophobic flat barrier under AC voltage and any atmosphere. In: Electrical engineering international conference (EEIC’2019)

  33. Benziada MA, Boubakeur A, Mekhaldi A (2018) Numerical simulation of the electric field distribution in point-barrier-plane air gaps. IEEE Trans Dielectr Electr Insul 25(6):2093–2102

    Article  Google Scholar 

  34. Lebedev SM, Gefle OS, Pokholkov YP (2005) The barrier effect in dielectrics: the role of interfaces in the breakdown of inhomogeneous dielectrics. IEEE Trans Dielectr Electr Insul 12(3):537–555

    Article  Google Scholar 

  35. Merabet S, Boudissa R, Slimani S, Bayadi A (2014) Optimisation of the dielectric strength of a non-uniform electric field electrode system under positive DC voltage by insertion of multiple barriers. IEEE Trans Dielectr Electr Insul 21:74–79

    Article  Google Scholar 

  36. Messad S, Bouchelga F, Boudissa R, Kornhuber S, Haim KD (2019) Electrical performance of rod-plane system with silicone tubular barrier under DC voltage and any atmosphere. In: Conference silicone insulation (CSI), Wacker Academy

  37. Mavroidis PN, Micropoulos PN, Stassinopoulos CA (2012) Impulse behavior of dielectric-covered rod-plane air gaps. IEEE Trans Dielectr Electr Insul 19(2):632–640

    Article  Google Scholar 

  38. Belhoul T (2019) Performance d’un intervalle d’air à champ électrique non uniforme avec barrière isolante à géométrie variable sous atmosphère quelconque. Thèse de doctorat en sciences Université A. Mira de Béjaia Algérie

  39. Zheng Y, Li Q, Chen Y, Shu S, Zhuang C (2019) Breakdown path and condition of air insulated rod-plane gap with polymeric barrier inserted under alternating voltages. AIP Adv 9:105207

    Article  Google Scholar 

  40. IEC60052 (2002) Voltage measurement by means of standard air gaps. Third edition 10

  41. DIN EN ISO 3219 (1994) Kunststoffe-Polymere/Harze in flüssigem, emulgiertem oder dispergiertem Zustand - Bestimmung der Viskosität mit einem Rotationsviskosimeter bei definiertem Geschwindigkeitsgefälle

  42. IEC60250. Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including metre wavelengths

  43. Hamour K, Soudani S, Smati B, Bouchelga F, Boudissa R, Kornhuber S, Haim KD (2019) Contribution to the optimization of the electrical performance of a superhydrophobic insulation covered with water drops under DC voltage. J Electrostat 102(103375):1–9

    Google Scholar 

  44. Hamour K, Bouchelga F, Boudissa R, Kornhuber S, Haim KD (2020) Optimization of the superhydrophobic insulation longevity by expulsion of any wet deposit with a weak alternating electrical field. J Electrostat 105(103451):1–10

    Google Scholar 

  45. Päsold G, Baersch R, Mauroux JC, Schoenemann T (2008) Elektrisches Verhalten von polymeren Isolierstoffoberflächen unter erschwerten klimatischen Innenraumbedingungen. ETG - Fachbericht (112): 27–34 VDE-Verlag

  46. IEC TS 61245 (2015) Artificial pollution tests on high-voltage ceramic and glass insulators to be used on dc systems

  47. IEC-TS 62073 (2016) Guidance on the measurement of hydrophobicity of insulator surfaces

  48. IEC 60060-1 (2010) High-voltage test techniques—part 1: general definitions and test requirements

  49. Phillipow E (1982) Systems of Electrical Power Engineering. Taschenbuch Elektrotechnik Vol 6 Hoschspannungstechnik Carl Hanser VEB Verl Berlin Muenchen Wien

  50. Ouchen L, Bayadi A, Boudissa A (2020) Dynamic model to predict the characteristics of the electric arc around a polluted insulator. IET Sci Meas Technol 14(1):83–90

    Article  Google Scholar 

  51. Karra A, Kalenderli O, Mardikyan K (2006) Effect of dielectric barriers to the electric field of rod plane air gap. In: Proceeding of the COMSOL users conference Prague

  52. Ho Lee D, Jeong J, Won S, Han Pil Kang D (2014) Superhydrophobic surfaces with near-zero sliding angles realized from solvent relative permittivity-mediated silica nanoparticle aggregation. J Mater Chem A 2:17165–17173

    Article  Google Scholar 

  53. Peng W, Gou X, Qin H, Zhao M, Zhao X, Guo Z (2019) Robust Mg(OH)2/epoxy resin superhydrophobic coating applied to composite insulators. Appl Surf Sci 466(1):126–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bouchelga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouatia, N., Messad, S., Bouchelga, F. et al. Comparative study of the electrical performance of superhydrophobic and hydrophilic tubular and plane insulating barriers under DC voltage. Electr Eng 104, 497–511 (2022). https://doi.org/10.1007/s00202-021-01314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01314-5

Keywords

Navigation