Skip to main content
Log in

A differentiability criterion for continuous functions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We show that, with the exception of the symmetric derivative, each limit of the form

$$\begin{aligned} \lim _{h\rightarrow 0}\frac{Af(x+ah)+Bf(x+bh)}{h},\qquad (A+B=0,Aa+Bb=1), \end{aligned}$$

is equivalent to the ordinary derivative, for all continuous functions at x. And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at x, by taking limits of first order difference quotients with two function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, J.M.: Generalizations of the Riemann derivative. Trans. Am. Math. Soc. 126, 181–199 (1967)

    Article  MathSciNet  Google Scholar 

  2. Ash, J.M.: Remarks on various generalized derivatives. Special Functions, Partial Differential Equations, and Harmonic Analysis. Springer Proceedings in Mathematics and Statistics, vol. 108, pp. 25–39. Springer, Cham (2014)

    Google Scholar 

  3. Ash, J.M., Catoiu, S.: Quantum symmetric \(L^{p}\) derivatives. Trans. Am. Math. Soc. 360, 959–987 (2008)

    Article  Google Scholar 

  4. Ash, J.M., Catoiu, S.: Multidimensional Riemann derivatives. Studia Math. 235(1), 87–100 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Ash, J.M., Catoiu, S.: Characterizing Peano and symmetric derivatives and the GGR conjecture’s solution. Int. Mat. Res. Notices (IMRN), to appear. (29 pp). https://doi.org/10.1093/imrn/rnaa364

  6. Ash, J.M., Catoiu, S., Chin, W.: The classification of generalized Riemann derivatives. Proc. Am. Math. Soc. 146(9), 3847–3862 (2018)

    Article  MathSciNet  Google Scholar 

  7. Ash, J.M., Catoiu, S., Chin, W.: The classication of complex generalized Riemann derivatives. J. Math. Anal. Appl. 502(2) (2021), to appear. (40pp). https://doi.org/10.1016/j.jmaa2021.125270

  8. Ash, J.M., Catoiu, S., Csörnyei, M.: Generalized vs. ordinary differentiation. Proc. Am. Math. Soc. 145(4), 1553–1565 (2017)

    Article  MathSciNet  Google Scholar 

  9. Ash, J.M., Catoiu, S., Fejzić, H.: Two pointwise characterizations of the Peano derivative. Preprint

  10. Ash, J.M., Catoiu, S., Fejzić, H.: Gaussian Riemann derivatives. Preprint

  11. Ash, J.M., Catoiu, S., Ríos-Collantes-de-Terán, R.: On the nth quantum derivative. J. Lond. Math. Soc. 66, 114–130 (2002)

    Article  Google Scholar 

  12. Ash, J.M., Janson, S., Jones, R.L.: Optical numerical differentiation using n function evaluations. Calcolo 21(2), 151–169 (1984)

    Article  MathSciNet  Google Scholar 

  13. Ash, J.M., Jones, R.L.: Mean value theorems for generalized Riemann derivatives. Proc. Am. Math. Soc. 101(2), 263–271 (1987)

    Article  MathSciNet  Google Scholar 

  14. Ash, A., Ash, J.M., Catoiu, S.: New definitions of continuity. Real Anal. Exchange 40(2), 403–420 (2014/15)

  15. de la Vallée Poussin, C.J.: Sur l’approximation des fonctions d’une variable réelle et de leurs dérivées par les pôlynomes et les suites limitées de Fourier. Bull. Acad. Royale Belgique 193–254 (1908)

  16. Denjoy, A.: Sur l’intégration des coefficients différentiels d’ordre supérieur. Fund. Math. 25, 273–326 (1935)

    Article  Google Scholar 

  17. Fejzić, H., Freiling, C., Rinne, D.: A mean value theorem for generalized Riemann derivatives. Proc. Am. Math. Soc. 136(2), 569–576 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ginchev, I., Guerraggio, A., Rocca, M., Equivalence of Peano and Riemann derivatives. In: Generalized Convexity and Optimization for Economic and Financial Decisions (Verona, 1998), Pitagora, Bologna, pp. 169–178 (1999)

  19. Ginchev, I., Guerraggio, A., Rocca, M.: Equivalence of (n+1)-th order Peano and usual derivatives for n-convex functions. Real Anal. Exchange 25(2), 513–520 (1999/00)

  20. Ginchev, I., Rocca, M.: On Peano and Riemann derivatives. Rend. Circ. Mat. Palermo (2) 49(3), 463–480 (2000)

    Article  MathSciNet  Google Scholar 

  21. Humke, P.D., Laczkovich, M.: Convexity theorems for generalized Riemann derivatives. Real Anal. Exchange 15(2), 652–674 (1989/90)

  22. Humke, P.D., Laczkovich, M.: Monotonicity theorems for generalized Riemann derivatives. Rend. Circ. Mat. Palermo (2) 38(3), 437–454 (1989)

    Article  MathSciNet  Google Scholar 

  23. Khintchine, A.: Recherches sur la structure des fonctions mesurables. Fund. Math. 9, 212–279 (1927)

    Article  Google Scholar 

  24. Lyness, J.N.: Differentiation formulas for analytic functions. Math. Comput. 22, 352–362 (1968)

    Article  MathSciNet  Google Scholar 

  25. Marcinkiewicz, J., Zygmund, A.: On the differentiability of functions and summability of trigonometric series. Fund. Math. 26, 1–43 (1936)

    Article  Google Scholar 

  26. Mitra, S., Mukhopadhyay, S.N.: Convexity conditions for generalized Riemann derivable functions. Acta Math. Hungar. 83(4), 267–291 (1999)

    Article  MathSciNet  Google Scholar 

  27. Peano, G.: Sulla formula di Taylor. Atti Acad. Sci. Torino 27, 40–46 (1891–92)

  28. Riemann, B.: Über die Darstellbarkeit einer Funktion durch eine trigonometrische Riehe, Ges. Werke, 2. Aufl., pp. 227–271. Leipzig (1892)

  29. Salzer, H.E.: Optimal points for numerical differentiation. Numer. Math. 2, 214–227 (1960)

    Article  MathSciNet  Google Scholar 

  30. Stein, E., Zygmund, A.: On the differentiability of functions. Studia Math. 23, 247–283 (1964)

    Article  Google Scholar 

  31. Thomson, B.S.: Monotonicity theorems. Proc. Am. Math. Soc. 83, 547–552 (1981)

    Article  MathSciNet  Google Scholar 

  32. Weil, C.E.: Monotonicity, convexity and symmetric derivatives. Trans. Am. Math. Soc. 231, 225–237 (1976)

    Article  Google Scholar 

  33. Zygmund, A.: Trigonometric Series, vol. I. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

Download references

Acknowledgements

I thank the anonymous referee for his careful reading and suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Catoiu.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

April 20, 2021. This paper is in final form and no version of it will be submitted for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catoiu, S. A differentiability criterion for continuous functions. Monatsh Math 197, 285–291 (2022). https://doi.org/10.1007/s00605-021-01574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01574-0

Keywords

Mathematics Subject Classification

Navigation