Skip to main content
Log in

Hamming weight distributions of multi-twisted codes over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \({\mathbb {F}}_q\) denote the finite field of order q,  and let \(n = m_1+m_2+\cdots +m_\ell ,\) where \(m_1,m_2,\ldots ,m_\ell \) are arbitrary positive integers (not necessarily coprime to q). In this paper, we explicitly determine Hamming weights of all non-zero codewords of several classes of multi-twisted codes of length n and block lengths \((m_1,m_2,\ldots ,m_\ell )\) over \({\mathbb {F}}_q.\) As an application of these results, we explicitly determine Hamming weight distributions of several classes of multi-twisted codes of length n and block lengths \((m_1,m_2,\ldots , m_{\ell })\) over \({\mathbb {F}}_q.\) Among these classes of multi-twisted codes, we identify two classes of optimal equidistant linear codes that have nice connections with the theory of combinatorial designs and several other classes of minimal linear codes that are useful in constructing secret sharing schemes with nice access structures. We illustrate our results with some examples, and list many optimal, projective and minimal linear codes belonging to these classes of multi-twisted codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin A., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998).

    Article  MathSciNet  Google Scholar 

  2. Ashikhmin A., Barg A., Cohen G., Huguet L.: Variations on minimal codewords in linear codes, pp. 96–105. Lecture Notes in Computer Science 948, AAECC-11Springer, Berlin (1995).

    MATH  Google Scholar 

  3. Aydin N., Haliović A.: A generalization of quasi-twisted codes: Multi-twisted codes. Finite Fields Appl. 45, 96–106 (2017).

    Article  MathSciNet  Google Scholar 

  4. Bassalygo L., Zinoviev V., Lebedev V.: Symmetric block designs and optimal equidistant codes. Probl. Inf. Transm. 56, 245–252 (2020).

    Article  MathSciNet  Google Scholar 

  5. Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi sums. Wiley, New York (1997).

    MATH  Google Scholar 

  6. Blahut R.E.: Algebraic Codes for Data Transmission. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  7. Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Combin. 18, 181–186 (1984).

    MathSciNet  MATH  Google Scholar 

  8. Carlet C., Ding C., Yuan J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).

    Article  Google Scholar 

  9. Chang S., Hyun J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86(10), 2167–2181 (2018).

    Article  MathSciNet  Google Scholar 

  10. Chauhan, V., Sharma, A.: A generalization of multi-twisted codes over finite fields, their Galois duals and Type II codes (submitted).

  11. Cohen, G. D., Mesnager, S. and Patey, A.: On minimal and quasi-minimal linear codes, Lecture Notes in Computer Science 8308, IMACC 2013, Springer, Heidelberg, pp. 85-98, 2013.

  12. Daraiseh A.G.A., Baum C.W.: Decoder error and failure probabilities for Reed-Solomon codes: decodable vectors method. IEEE Trans. Commun. 46(7), 857–859 (1998).

    Article  Google Scholar 

  13. Ding C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inf. Theory 55(3), 955–960 (2009).

    Article  MathSciNet  Google Scholar 

  14. Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015).

    Article  MathSciNet  Google Scholar 

  15. Ding C., Wang X.: A coding theory construction of new systematic authentication codes. Theoret. Comput. Sci. 330(1), 81–99 (2005).

    Article  MathSciNet  Google Scholar 

  16. Ding C., Heng Z., Zhou Z.: Minimal binary linear codes. IEEE Trans. Inf. Theory 64(10), 6536–6545 (2018).

    Article  MathSciNet  Google Scholar 

  17. Etzion T., Storme L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78, 311–350 (2016).

    Article  MathSciNet  Google Scholar 

  18. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, accessed 16 Jan 2021

  19. Heng Z., Yue Q.: Several classes of cyclic codes with either optimal three weights or a few weights. IEEE Trans. Inf. Theory 62(8), 4501–4513 (2016).

    Article  MathSciNet  Google Scholar 

  20. Heng Z., Ding C., Zhou Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018).

    Article  MathSciNet  Google Scholar 

  21. Huffman W.C., Pless V.: Fundamental of Error-correcting Codes. Cambridge University Press, New York (2003).

    Book  Google Scholar 

  22. Jian G., Lin Z., Feng R.: Two-weight and three-weight linear codes based on Weil sums. Finite Fields Appl. 57, 92–107 (2019).

    Article  MathSciNet  Google Scholar 

  23. Li Z., Sun J., Li J.: A novel secret sharing scheme based on minimal linear codes. Wuhan Univ. J. Natural Sci. 18, 407–412 (2013).

    Article  Google Scholar 

  24. Li C., Yue Q., Li F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014).

    Article  MathSciNet  Google Scholar 

  25. Li F., Yue Q., Liu F.: The weight distribution of a class of cyclic codes containing a subclass with optimal parameters. Finite Fields Appl. 45, 183–202 (2017).

    Article  MathSciNet  Google Scholar 

  26. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  27. Luo J., Feng K.: On the weight distributions of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008).

    Article  MathSciNet  Google Scholar 

  28. MacWilliams F.J., Seery J.: The weight distributions of some minimal cyclic codes. IEEE Trans. Inf. Theory 27(6), 796–806 (1981).

    Article  MathSciNet  Google Scholar 

  29. Massey, J. L.: Minimal codewords and secret sharing, Proc. 6th Joint Swedish–Russian Int. Workshop on Info. Theory, pp. 276-279, (1993).

  30. Mesnager S., Sinak A.: Several classes of minimal linear codes with few weights from weakly regular Plateaued functions. IEEE Trans. Inf. Theory 66(4), 2296–2310 (2020).

    Article  MathSciNet  Google Scholar 

  31. Morelos-Zaragoza R.H.: The Art of Error Correcting Coding. Wiley, Hoboken (2006).

    Book  Google Scholar 

  32. Sharma A., Chauhan V.: Skew multi-twisted codes over finite fields and their Galois duals. Finite Fields Appl. 59, 297–334 (2019).

    Article  MathSciNet  Google Scholar 

  33. Sharma A., Chauhan V., Singh H.: Multi-twisted codes over finite fields and their dual codes. Finite Fields Appl. 51, 270–297 (2018).

    Article  MathSciNet  Google Scholar 

  34. Smith D.H., Hughes L.A., Perkins S.: A new table of constant weight codes of length greater than 28. Electr. J. Combin. 13, 1–18 (2006).

    MathSciNet  MATH  Google Scholar 

  35. Stinson D.R., Rees G.H.J.V.: The equivalence of certain equidistant binary codes and symmetric BIBDS. Combinatorica 4(4), 357–362 (1984).

    Article  MathSciNet  Google Scholar 

  36. Vega G.: A characterization of a class of optimal three-weight cyclic codes of dimension 3. Finite Fields Appl. 42, 23–38 (2016).

    Article  MathSciNet  Google Scholar 

  37. Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Sharma.

Additional information

Communicated by C. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V. Chauhan: Research support by UGC, India, is gratefully acknowledged. A. Sharma: Research support by DST-SERB, India, under Grant No. MTR/2017/000358 is gratefully acknowledged. S. Sharma: Research support by UGC, India, is gratefully acknowledged, M. Yadav: Research support by CSIR, India, is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, V., Sharma, A., Sharma, S. et al. Hamming weight distributions of multi-twisted codes over finite fields. Des. Codes Cryptogr. 89, 1787–1837 (2021). https://doi.org/10.1007/s10623-021-00889-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00889-1

Keywords

Mathematics Subject Classification

Navigation