Skip to main content
Log in

Effect of high temperature on physical properties of yellow sandstone

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

High-temperature baked sandstone is widely distributed in the north of Shaanxi, China. The lithology of these rocks has a significant impact on the mining of underground resources such as coal. To understand changes in its physical properties after heat treatment, yellow sandstone was heated for two hour at a constant temperature of 25, 800, 1000, 1100 or 1250 °C. Data on the glossiness, hardness and colour brightness, and surface micrographs, were obtained to study the relationship between surface characteristics and temperature. The relationship between internal structural characteristics and temperature was studied using electrical properties and nuclear magnetic resonance (NMR) spectroscopy. The results showed that below 1100 °C, glossiness and porosity increased and conductivity, hardness and colour brightness decreased, mainly due to melting of the binder. Above 1100 °C, there was melting of clay minerals, quartz and feldspar particles, resulting in a sharp increase in the brightness and hardness of yellow sandstone, a sharp decrease in porosity, and glossiness and conductivity increase rarely. Combining these results with the surface micrographs, the whole thermal change mechanism could be summarised as follows: dehydration condensation of water-bearing minerals → melting of cement → melting of quartz and feldspar particles → pyro-metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NMR :

Nuclear magnetic resonance

T2 :

Transverse relaxation time

T 2 B :

Volume relaxation time

T 2 :

Surface relaxation time

T 2 D :

Diffusion relaxation time

HL :

Leeb hardness symbol

A :

Starting point of T2

B :

First peak of T2

C :

Trough of T2

D :

Final peak of T2

E :

End point of T2

K :

Conductivity

\(\varphi\) :

Porosity

K NMR :

Permeability

References

  1. Zhang F, Zhao J, Hu D, Skoczylas F, Shao J (2017) Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment. Rock Mech Rock Eng 51(3):677–694. https://doi.org/10.1007/s00603-017-1350-8

    Article  Google Scholar 

  2. Lei H, Chiyang L, Lei Y, Junfeng Z, Jianjun F (2010) Petrologic and REE Geochemical Characters of Burnt Rocks. Acta Geologica Sinica - English Edition 82(2):392–398. https://doi.org/10.1111/j.1755-6724.2008.tb00589.x

    Article  Google Scholar 

  3. Yin T, Wang P, Li X, Shu R, Ye Z (2016) Effects of thermal treatment on physical and mechanical characteristics of coal rock. Journal of Central South University 23(9):2336–2345. https://doi.org/10.1007/s11771-016-3292-9

    Article  Google Scholar 

  4. Bao H, Zhai Y, Lan HX, Zhang KK, Qi Q, Yan CG (2019) Distribution characteristics and controlling factors of vertical joint spacing in sand-mud interbedded strata. J Structural Geol; 128. https://doi.org/10.1016/j.jsg.2019.103886

  5. Lan HX, Chen J, Macciotta R (2019) Universal confined tensile strength of intact rock. Sci Rep 16;9(1):6170. https://doi.org/10.1038/s41598-019-42698-6

  6. Sirdesai NN, Mahanta B, Ranjith PG, Singh TN (2017) Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone. Bull Eng Geol Env. https://doi.org/10.1007/s10064-017-1149-6

    Article  Google Scholar 

  7. Tian H, Kempka T, Xu N, Ziegler M (2012) Physical Properties of Sandstones After High Temperature Treatment. Rock Mech Rock Eng 45(6):1113–1117. https://doi.org/10.1007/s00603-012-0228-z

    Article  Google Scholar 

  8. Mahanta B, Ranjith PG, Vishal V, Singh TN (2020) Temperature-induced deformational responses and microstructural alteration of sandstone. J Petrol Sci Eng. https://doi.org/10.1016/j.petrol.2020.107239

    Article  Google Scholar 

  9. Zhang WQ, Sun Q, Zhu SY, Hao S (2017) The effect of thermal damage on the electrical resistivity of sandstone. J Geophys Eng 14(2):255–261. https://doi.org/10.1088/1742-2140/aa5a22

    Article  Google Scholar 

  10. Zuo JP, Xie HP, Liu YJ, Peng SP (2010) Experimental research on thermal cracking of sandstone under different temperature. Chinese journal of solid mechanics (2):119–126. CNKI: SUN:GTLX.0.2010-02-003

  11. Wu P, Li Y, Liu W, Li Y, Song Y (2020Microstructure evolution of hydrate-bearing sands during thermal dissociation and ensued impacts on the mechanical and seepage characteristics. Journal of Geophysical Research: Solid Earth 125. https://doi.org/10.1029/2019JB01910310.1029/2019JB019103

  12. Mookherjee M, Stixrude L, Karki B (2008) Hydrous silicate melt at high pressure. Nature 452(7190):983–986. https://doi.org/10.1038/nature06918

    Article  Google Scholar 

  13. Zhou Z, Cai X, Ma D, Cao WZ, Chen L, Zhou J (2018) Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content. Eng Fract Mech 193:47–65. https://doi.org/10.1016/j.engfracmech.2018.02.028

    Article  Google Scholar 

  14. Hartlieb P, Toifl M, Kuchar F, Meisels R, Antretter T (2015) Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner Eng 91:34–41. https://doi.org/10.1016/j.mineng.2015.11.008

    Article  Google Scholar 

  15. Somerton WH ( 1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier Science Publishers Amsterdam, The Netherlands

  16. Arnold J, Clauser C, Pechnig R, Anferova C, Anferov V, Blmich B (2006) Porosity and permeability from mobile nmr core-scanning. Petrophys 47(4)

  17. Clarkson CR, Jensen JL, Pedersen PK, Freeman M (2012) Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir. AAPG Bull 96(2):355–374. https://doi.org/10.1306/05181110171

    Article  Google Scholar 

  18. Kamal MS, Mahmoud M, Hanfi M, Elkatatny S, Hussein I (2019) Clay minerals damage quantification in sandstone rocks using core flooding and nmr. J Petrol Exploration and Prod Technol. 9, pages593–603. https://doi.org/10.1007/s13202-018-0507-7.

  19. Sun Z, Zhou S, Li J, Chen K, Zhang C, Zhang Y, Li P (2020) Laboratory research on gas transport in shale nanopores considering the stress effect and slippage effect. J Geophys Res Solid Earth. https://doi.org/10.1029/2019jb018256

    Article  Google Scholar 

  20. Li G, Zhan L, Yun T, Dai S (2020) Pore-scale controls on the gas and water transport in hydrate-bearing sediments. Geophys Res Lett. https://doi.org/10.1029/2020gl086990

    Article  Google Scholar 

  21. Ji YK, Hou J, Zhao E, Lu N, Bai YJ, Zhou K, Liu YG (2020) Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low-field NMR technique. Am Geophys Union. https://doi.org/10.1029/2019JB018572

    Article  Google Scholar 

  22. Li HB, Zhu JY, Guo HK (2008) Methods for Calculating Pore Radius Distribution in Rock from NMR T2 Spectra. Chinese J Magn Reson 25(2):273–280. https://doi.org/10.3969/j.issn.1000-4556.2008.02.016

    Article  Google Scholar 

  23. Qin HL, Yao HF, Jia XB, Li PF, Meng YJ (2019) Pore and Fissure Characteristics of Deep Coal Reservoir Based on NMR. Coal Technol 38(08):55–58. https://doi.org/10.13301/j.cnki.ct.2019.08.019

  24. Tziotziou M, Karakosta E, Karatasios I, Diamantopoulos G, Sapalidis A, Fardis M, Maravelaki-Kalaitzaki P, Papavassiliou G, Kilikoglou V (2011) Application of 1h nmr to hydration and porosity studies of lime–pozzolan mixtures. Microporous Mesoporous Mater 139(1–3):16–24. https://doi.org/10.1016/j.micromeso.2010.10.010

    Article  Google Scholar 

  25. Vagnon F, Colombero C, Colombo F, Comina C, Ferrero AM, Mandrone G, Vinciguerra SC (2019) Effects of thermal treatment on physical and mechanical properties of Valdieri Marble - NW Italy. Int J Rock Mech Min Sci 116:75–86. https://doi.org/10.1016/j.ijrmms.2019.03.006

    Article  Google Scholar 

  26. Ruffet C, Darot M, Guéguen Y (1995) Surface conductivity in rocks: a review. Surv Geophys 16(1):83–105. https://doi.org/10.1007/BF00682714

    Article  Google Scholar 

  27. Auzerais FM, Dunsmuir J, Ferréol BB, Martys N (1996) Transport in sandstone: A study based on three dimensional microtomography. Geophys Res Lett 23(7):705–708. https://doi.org/10.1029/96GL00776

    Article  Google Scholar 

  28. Hutt JR, Berg JW (1968) THERMAL AND ELECTRICAL CONDUCTIVITIES OF SANDSTONE ROCKS AND OCEAN SEDIMENTS. Geophysics 33(3):489–500. https://doi.org/10.1190/1.1439946

    Article  Google Scholar 

  29. Parkhomenko EI (1982) Electrical resistivity of minerals and rocks at high temperature and pressure. Rev Geophys 20(2):193. https://doi.org/10.1029/rg020i002p00193

    Article  Google Scholar 

  30. Chico RJ (1988) Rock-color chart. In: General Geology. Encyclopedia of Earth Science, Springer, Boston, MA. https://doi.org/10.1007/0-387-30844-x_95

  31. Sato H, Sacks IS, Murase T (1989) The use of laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone: Comparison with heat flow and electrical conductivity studies. J Geophys Res 94(B5):5689. https://doi.org/10.1029/jb094ib05p05689

    Article  Google Scholar 

  32. Kenyon WE, Howard JJ (1989)Pore-size distribution and nmr in microporous cherty sandstones. Spwla Annual Logging Symposium

  33. Liaw HK, Kulkarni R, Chen S, Watson AT (1996) Characterization of fluid distributions in porous media by NMR techniques. AIChE J 42(2):538–546. https://doi.org/10.1002/aic.690420223

    Article  Google Scholar 

  34. Herman R (2001) An introduction to electrical resistivity in geophysics. Am J Phys 69(9):943–952. https://doi.org/10.1119/1.1378013

    Article  Google Scholar 

  35. Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil and Tillage Res 83(2):173–193. https://doi.org/10.1016/j.still.2004.10.004

    Article  Google Scholar 

  36. Ariño I, Kleist U, Rigdahl M (2005) Effect of gloss and texture on the color of injection-molded pigmented plastics. Polym Eng Sci 45(5):733–744. https://doi.org/10.1002/pen.20330

    Article  Google Scholar 

  37. Sygała A, Bukowska M, Janoszek T (2013) High Temperature Versus Geomechanical Parameters of Selected Rocks – The Present State of Research. Journal of Sustainable Mining 12(4):45–51. https://doi.org/10.7424/jsm130407

    Article  Google Scholar 

  38. Wu G, Wang Y, Swift G, Chen J (2013) Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng 31(2):809–816. https://doi.org/10.1007/s10706-013-9614-x

    Article  Google Scholar 

  39. Han T, Best AI, Sothcott J, North LJ, MacGregor LM (2015) Relationships among low frequency (2Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones. J Appl Geophys 112:279–289. https://doi.org/10.1016/j.jappgeo.2014.12.006

    Article  Google Scholar 

  40. Gautam PK, Verma AK, Maheshwar S, Singh TN (2016) Thermomechanical Analysis of Different Types of Sandstone at Elevated Temperature. Rock Mech Rock Eng 49(5):1985–1993. https://doi.org/10.1007/s00603-015-0797-8

    Article  Google Scholar 

  41. Jin P, Hu Y, Shao J, Liu Z, Song S (2019) Influence of temperature on the structure of pore–fracture of sandstone. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01858-w

    Article  Google Scholar 

  42. Hou X, Zhu Y, Wang Y, Liu Y (2019) Experimental study of the interplay between pore system and permeability using pore compressibility for high rank coal reservoirs. Fuel. 254. https://doi.org/10.1016/j.fuel.2019.115712

  43. Dong ZH, Sun Q, Ranjith PG (2019) Surface properties of grayish-yellow sandstone after thermal shock. Environmental Earth Sci 78(14). https://doi.org/10.1007/s12665-019-8451-5

  44. Zhao F, Sun Q (2020) Combined effects of cooling rate and salt on physical properties of yellow sandstone collected from Eastern China. Arab J Geosci 13(13). https://doi.org/10.1007/s12517-020-05455-y

  45. Zhang H, Sun Q, Liu L, Ge ZL (2020) Changes in glossiness, electrical properties and hardness of red sandstone after thermal treatment. J Applied Geophys. 175. https://doi.org/10.1016/j.jappgeo.2020.104005

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 41672279, 41972288).

Author information

Authors and Affiliations

Authors

Contributions

He Zhang: Writing – original draft, Investigation. Qiang Sun: Methodology, Conceptualization, Writing—review & editing. Hailiang Jia: Supervision, Writing—review & editing. Jishi Geng: Data curation.

Corresponding author

Correspondence to Qiang Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sun, Q., Geng, J. et al. Effect of high temperature on physical properties of yellow sandstone. Heat Mass Transfer 57, 1981–1995 (2021). https://doi.org/10.1007/s00231-021-03088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03088-9

Navigation