Skip to main content
Log in

Folate metabolizing gene polymorphisms and genetic vulnerability to preterm birth in Korean women

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

The folate metabolism that converts homocysteine to methionine is closely related to the accumulation of homocysteine. Increased homocysteine levels lead to an impaired antithrombotic function of the vascular endothelium and uterine-placental circulation, resulting in abnormal pregnancy outcomes. Previous studies have reported that gene polymorphisms in folate metabolism are associated with the development of preterm birth (PTB) in various populations.

Objective

we performed a case–control study to evaluate the association between five polymorphisms in folate metabolic genes (MTHFR, MTR, MTRR, TCN2) and PTB.

Methods

In this study, a total of 254 subjects were analyzed (111 patients with PTB and 143 women at ≥ 38 weeks of gestation). Genotype and allele frequency differences between patients and control groups and the Hardy–Weinberg equilibrium were assessed using a Chi-square test. For evaluation indicators, odds ratios (ORs) of 95% confidence intervals (CI) were estimated. In addition, we analyzed the combined genotype frequencies of SNPs of folate-metabolizing genes to measure gene–gene interactions for PTB.

Results

Our results showed that the MTR rs1805087 GG (p = 0.031), and TCN2 rs1801198 CG genotype (OR 0.53, 95% CI 0.288–0.980, p = 0.042) were significantly associated with PTB. The MTHFR rs4846049 AA showed a marginal trend toward significance (OR 0.15, 95% CI 0.018–1.205, p = 0.041). In particular, the combined genotypes, including MTHFR rs1537514 CC—MTRR rs1801394 GG, MTHFR rs1537514 CC—TCN2 rs1801198 CG, and MTR rs1805087 AA—TCN2 rs1801198 CG, have significant interactions with PTB (OR 0.49, 95% CI 0.248–0.992, p < 0.05).

Conclusion

The polymorphisms of folate metabolic genes may have a genetic association with the development of PTB in Korean women. A larger sample set and functional studies are required to further elucidate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey LB, Gregory JF (1999) Folate metabolism and requirements. J Nutr 129(4):779–782

    Article  CAS  PubMed  Google Scholar 

  • Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88(1):31–38

    Article  PubMed  Google Scholar 

  • Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with timetrends since 1990 for selected countries: a systematic analysis and implication. Lancet 379(9832):2162–2172

    Article  PubMed  Google Scholar 

  • Cai D, Ling L, Pan C, Liu X, Bu R, Chen X, Wang K, Cheng Y, Wu B (2010) Association of polymorphisms in folate metabolic genes and prostate cancer risk: a case-control study in a Chinese population. J Genet 89(2):263–267

    Article  PubMed  Google Scholar 

  • Chen GB, Xu Y, Xu HM, Li MD, Zhu J, Lou XY (2011) Practical and theoretical considerations in study design for detecting gene-gene interactions using MDR and GMDR. PLoS ONE 6(2):e16981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Chen L, Zhu LH, Zhang ST, Wu YL (2016) Association of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with preterm delivery and placental abruption: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 95(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Crider KS, Whitehead N, Buus RM (2005) Genetic variation associated with preterm birth: a HuGE review. Genet Med 7(9):593–604

    Article  CAS  PubMed  Google Scholar 

  • Engel SM, Olshan AF, Siega-Riz AM, Savitz DA, Chanock SJ (2006) Polymorphisms in folate metabolizing genes and risk for spontaneous preterm and small-for-gestational age birth. Am J Obstet Gynecol 195(5):1231.e1-1231.e11

    Article  CAS  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Ferguson SE, Smith GN, Walker MC (2001) Maternal plasma homocysteine levels in women with preterm premature rupture of membranes. Med Hypotheses 56(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg RL, Culhane JF, Dlams J, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371(9606):75–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Haghiri R, Mashayekhi F, Bidabadi E, Salehi Z (2016) Analysis of methionine synthase (rs1805087) gene polymorphism in autism patients in Northern Iran. Acta Neurobiol Exp (Wars) 76(4):318–323

    Google Scholar 

  • Han YS, Ha EH, Park HS, Kim YJ (2011) Relationships between pregnancy outcomes, biochemical markers and pre-pregnancy body mass index. Int J Obes (Lond) 35(4):570–577

    Article  CAS  Google Scholar 

  • Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354(9176):407–413

    Article  CAS  PubMed  Google Scholar 

  • Hashemi M, Mokhtari M, Yazdani-Shahrbabaki V, Danesh H, Bizhani F, Taheri M (2018) Evaluation of transcobalamin II rs1801198 and transcobalamin II receptor rs2336573 gene polymorphisms in recurrent spontaneous abortion. J Obstet Gynaecol 38(6):860–863

    Article  CAS  PubMed  Google Scholar 

  • Hattersley AT, McCarthy MI (2005) What makes a good genetic association study? Lancet 366(9493):1315–1323

    Article  PubMed  Google Scholar 

  • Hong EP, Park JW (2012) Sample size and statistical power calculation in genetic association studies. Genom Inform 10(2):117–122

    Article  Google Scholar 

  • Hozyasz KK, Mostowska A, Szaflarska-Poplawska A, Lianeri M, Jagodzinski PP (2012) Polymorphic variants of genes involved in homocysteine metabolism in celiac disease. Mol Biol Rep 39(3):3123–3130

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Lucock M, Veysy M, Jablonski N, Chaplin G, Beckett E (2018) Frequency of folate-related polymorphisms varies by skin pigmentation. Am J Hum Biol 30(2):e23079

    Article  Google Scholar 

  • Kim JH, Jeon YJ, Lee BE, Kang HJ, Shin JE, Choi DH, Lee WS, Kim NK (2013) Association of methionine synthase and thymidylate synthase genetic polymorphisms with idiopathic recurrent pregnancy loss. Fertil Steril 99(6):1674–1680

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Lee BE, Jeon YJ, Rah HC, Lee WS, Shin JE, Choi DH, Kim NK (2014) Transcobalamin II (TCN 2 67A>G and TCN 2 776C>G) and transcobalamin II receptor (TC blR 1104C>T) polymorphisms in Korean patients with idiopathic recurrent spontaneous abortion. Am J Reprod Immunol 72(3):337–346

    Article  CAS  PubMed  Google Scholar 

  • Kim ES, Kim JO, An HJ, Jung HS, Lee HA, Kim JH, Ahn EH, Kim YR, Lee WS, Kim NK (2017) MTHFR 3′-untranslated region polymorphisms contribute to recurrent pregnancy loss risk and alterations in peripheral natural killer cell proportions. Clin Exp Reprod Med 44(3):152–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurzwelly D, Knop S, Guenther M, Loeffler J, Korfel A, Thiel E, Hebert H, Simon M, Weller M, Linnebank MA et al (2010) Genetic variants of folate and methionine metabolism and PCNSL incidence in German patient population. J Neurooncol 100(2):187–192

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3):137–146

    Article  CAS  PubMed  Google Scholar 

  • Mfady DS, Sadiq MF, Khabour OF, Fararjeh AS, Abu-Awad A, Khader Y (2014) Associations of variants in MTHFR and MTRR genes with male infertility in the Jordanian population. Gene 536(1):40–44

    Article  CAS  PubMed  Google Scholar 

  • Micle O, Muresan M, Antal L, Bodog F, Bodog A (2012) The influence of homocysteine and oxidative stress on pregnancy outcome. J Med Life 5(1):68–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadpour-Gharehbagh A, Teimoori B, Narooei-nejad M, Mehrabani M, Saravani R, Salimi S (2018) The association of the placental MTHFR 3’-UTR polymorphisms, promoter methylation, and MTHFR expression with preeclampsia. J Cell Biochem 119(2):1346–1354

    Article  CAS  PubMed  Google Scholar 

  • Muglia LJ, Katz M (2010) The Enigma of Spontaneous Preterm Birth. N Engl J Med 362(6):529–535

    Article  CAS  PubMed  Google Scholar 

  • Oussalah A, Levy J, Filhine-Trésarrieu P, Namour F, Guéant JL (2017) Association of TCN2 rs1801198 c.776G>C polymorphism with markers of one-carbon metabolism and related diseases: a systematic review and meta-analysis of genetic association studies. Am J Clin Nutr 106(4):1142–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Kim JO, An HJ, Ryu CS, Ko EJ, Kim YR, Ahn EH, Lee WS, Kim JH, Kim NK (2019) Genetic polymorphisms of the cobalamin transport system are associated with idiopathic recurrent implantation failure. J Ass Reprod Genet 36:1513–1522

    Article  Google Scholar 

  • Regec A, Quadros EV, Platica O, Rothenberg SP (1995) The cloning and characterization of the human transcobalamin II gene. Blood 85(10):2711–2719

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Leclerc D, Wu Q, Gupta S, Kruger WD, Rozen R (2008) Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency. J Cell Biochem 105(2):467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi M, Amin-Beidokhti M, Lima BS, Gholami M, Javadi GR, Mirfakhraie R (2018) The rs4846049 polymorphism in the 3’UTR region of the MTHFR gene increases the migraine susceptibility in an Iranian population. J Pain Res 11:145–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sata F, Yamada H, Kishi R, Minakami H (2012) Maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of recurrent pregnancy loss. J Dev Orig Health Dis 3(5):327–332

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Xie X, Jia Y, Li S (2017) Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clin Genet 91(2):265–284

    Article  CAS  PubMed  Google Scholar 

  • Smith GCS (2012) Researching new methods of screening for adverse pregnancy outcome: lessons from pre-eclampsia. PLoS Med 9(7):e1001274

    Article  PubMed  PubMed Central  Google Scholar 

  • Song CS, Song WB, Bao JY, Luo J, Zuo X, An N, Zhang Y (2018) Association between decreased plasma folate levels and MTHFR C677T, and MTRR A66G gene polymorphisms as determinants for elevated total homocysteine concentration in pregnant women. Hered Genet Curr Res 7:e1000193

    Google Scholar 

  • Stanislawska-Sachadyn A, Woodside JV, Sayers CM, Yarnell JW, Young IS, Evans AE, Mitchell LE, Whitehead AS (2010) The transcobalamin (TCN2) 776C>G polymorphism affects homocysteine concentrations among subjects with low vitamin B12 status. Eur J Clin Nutr 64(11):1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Tellapragada C, Eshwara VK, Bhat P, Acharya S, Kamath A, Bhat S, Rao C, Nayak S, Mukhopadhyay C (2016) Risk factors for preterm birth and low birth weight among pregnant Indian women: a hospital-based prospective study. J Prev Med Public Health 49(3):165–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang BJ, Liu MJ, Wang Y, Dai JR, Tao JY, Wang SN (2015) Association between SNPs in genes involved in folate metabolism and preterm birth risk. Genet Mol Res 14(1):850–859

    Article  CAS  PubMed  Google Scholar 

  • Wilcox AJ, Skjaerven R, Lie RT (2008) Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol 167(4):474–479

    Article  PubMed  Google Scholar 

  • Wu C, Gong Y, Sun A, Zhang Y, Zhang C, Zhang W, Zhao G, Zou Y, Ge J (2013) The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutr Metab Cardiovasc Dis 23(7):693–698

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhu P, Geng X, Liu Z, Cui L, Gao Z (2017) Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet 295(5):1105–1118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all volunteers for providing DNA samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Jun Jin.

Ethics declarations

Conflict of interest

Bit Na Kwon, Noo Ri Lee, Hyung Jun Kim, Yun Dan Kang, Jong Soo Kim, Jin Wan Park, Han Jun Jin declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of the Dankook University. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, B.N., Lee, N.R., Kim, H.J. et al. Folate metabolizing gene polymorphisms and genetic vulnerability to preterm birth in Korean women. Genes Genom 43, 937–945 (2021). https://doi.org/10.1007/s13258-021-01082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01082-3

Keywords

Navigation