Skip to main content
Log in

Three-to-one internal resonance in a two-beam structure connected with nonlinear joints

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A two-degree-of-freedom model for a two-beam structure with nonlinear joints is presented and used to investigate the nonlinear responses of the system to a primary resonance of its first two modes in the presence of three-to-one internal resonance. By using the equilibrium conditions between the beams and the joints, the joint dynamic characteristics included linear and nonlinear torsional stiffness are introduced into the model of the system. The first two global mode functions of the two-beam structure, which can be obtained by the global mode method, are used to formulate the nonlinear dynamic model of the system and the specific linear torsional stiffness that result in three-to-one internal resonance is mainly considered. The method of multiple scales is employed to obtain the governing equations of the amplitudes and phases for the two-degree-of-freedom nonlinear dynamical system under the three-to-one internal resonance condition. Based on the modulation equations obtained by the method of multiple scales, the approximation solutions are derived and compared with those obtained by the numerical integration method. Through the cases of primary resonance of the first two modes with the three-to-one internal resonance condition, the frequency–response and force-response curves are plotted for investigating the nonlinear dynamic behavior in the two-beam structure connected with nonlinear joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Song, Y., Hartwigsen, C.J., Mcfarland, D.M., Vakakis, A.F., Bergman, L.A.: Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 273(1), 249–276 (2004)

    Article  Google Scholar 

  2. Ouyang, H., Oldfield, M.J., Mottershead, J.E.: Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load. Int. J. Mech. Sci. 48(12), 1447–1455 (2006)

    Article  Google Scholar 

  3. Shaik, S.: Dynamic stability of multilayered beam with bolted joints. Dissertation, National Institute of Technology Rourkela (2007)

  4. Iranzad, M., Ahmadian, H.: Identification of nonlinear bolted lap joint models. Comput. Struct. 96–97(4), 1–8 (2012)

    Article  Google Scholar 

  5. Eriten, M., Kurt, M., Luo, G., Mcfarland, D.M., Bergman, L.A., Vakakis, A.F.: Nonlinear system identification of frictional effects in a beam with a bolted joint connection. Mech. Syst. Signal Process 39(1–2), 245–264 (2013)

    Article  Google Scholar 

  6. Chu, Y., Wen, H., Chen, T.: Nonlinear modeling and identification of an aluminum honeycomb panel with multiple bolts. Shock Vib. (2016). https://doi.org/10.1155/2016/1276753

    Article  Google Scholar 

  7. Hammami, C., Balmes, E., Guskov, M.: Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping. Mech. Syst. Signal Process 70, 714–724 (2016)

    Article  Google Scholar 

  8. Adel, F., Shokrollahi, S., Jamal-Omidi, M., Ahmadian, H.: A model updating method for hybrid composite/aluminum bolted joints using modal test data. J. Sound Vib. 396, 172–185 (2017)

    Article  Google Scholar 

  9. Liu, S., Ma, Y., Zhang, D., Hong, J.: Studies on dynamic characteristics of the joint in the aero-engine rotor system. Mech. Syst. Signal Process. 29, 120–136 (2012)

    Article  Google Scholar 

  10. Qin, Z., Han, Q., Chu, F.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2016)

    Article  Google Scholar 

  11. Adel, F., Jamal-Omidi, M.: Vibration of nonlinear bolted lap-jointed beams using Timoshenko theory. Arch. Appl. Mech. 88(6), 981–997 (2018)

    Article  Google Scholar 

  12. Bowden, M., Dugundji, J.: Joint damping and nonlinearity in dynamics of space structures. AIAA J. 28(4), 740–749 (1990)

    Article  Google Scholar 

  13. Moon, F., Li, G.: Experimental study of chaotic vibrations in a pin-jointed space truss structure. AIAA J. 28(5), 915–921 (1990)

    Article  Google Scholar 

  14. Folkman, S.L., Rowsell, E.A., Ferney, G.D.: Influence of pinned joints on damping and dynamic behavior of a truss. J. Guid. Control Dyn. 18(6), 1398–1403 (1995)

    Article  Google Scholar 

  15. Lake, M., Fung, J., Gloss, K., Liechty, D., Liechty, D., Lake, M., Fung, J., Gloss, K.: Experimental characterization of hysteresis in a revolute joint for precision deployable structures. In: 38th structures, structural dynamics, and materials conference, p. 1379 (1997)

  16. Hachkowski, M.R., Peterson, L.D., Lake, M.S.: Friction model of a revolute joint for a precision deployable spacecraft structure. J. Spacecr. Rockets 36(4), 591–598 (1999)

    Article  Google Scholar 

  17. Li, T., Guo, J., Cao, Y.: Dynamic characteristics analysis of deployable space structures considering joint clearance. Acta Astronaut. 68(7–8), 974–983 (2011)

    Article  Google Scholar 

  18. Guo, H., Zhang, J., Liu, R., Deng, Z.: Effects of joint on dynamics of space deployable structure. Chin. J. Mech. Eng. 26(5), 861–872 (2013)

    Article  Google Scholar 

  19. Zhang, J., Deng, Z., Guo, H., Liu, R.: Equivalence and dynamic analysis for jointed trusses based on improved finite elements. Proc. Inst. Mech. Eng. Part K - J. Multi-Body Dyn. 228(1), 47–61 (2014)

    Google Scholar 

  20. Wei, F., Zheng, G.: Nonlinear vibration analysis of spacecraft with local nonlinearity. Mech. Syst. Signal Process 24(2), 481–490 (2010)

    Article  Google Scholar 

  21. Wei, J., Cao, D., Wang, L., Huang, H., Huang, W.: Dynamic modeling and simulation for flexible spacecraft with flexible jointed solar panels. Int. J. Mech. Sci. 130, 558–570 (2017)

    Article  Google Scholar 

  22. Wei, J., Cao, D., Liu, L., Huang, W.: Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass. Appl. Math. Model. 48, 787–805 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wei, J., Cao, D., Huang, H.: Nonlinear vibration phenomenon of maneuvering spacecraft with flexible jointed appendages. Nonlinear Dyn. 94(4), 2863–2877 (2018)

    Article  Google Scholar 

  24. Wei, J., Cao, D., Huang, H., Wang, L., Huang, W.: Dynamics of a multi-beam structure connected with nonlinear joints: modelling and simulation. Arch. Appl. Mech. 88(7), 1059–1074 (2018)

    Article  Google Scholar 

  25. Chin, C.-M., Nayfeh, A.H.: Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dyn. 12(2), 129–154 (1997)

    Article  MathSciNet  Google Scholar 

  26. Chin, C.-M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20(2), 131–158 (1999)

    Article  MathSciNet  Google Scholar 

  27. Ansari, M., Esmailzadeh, E., Younesian, D.: Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load. Nonlinear Dyn. 61(1–2), 163–182 (2010)

    Article  Google Scholar 

  28. Hegazy, U.H.: 3: 1 Internal resonance of a string-beam coupled system with cubic nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4219–4229 (2010)

    Article  MathSciNet  Google Scholar 

  29. Tang, Y.-Q., Chen, L.-Q.: Primary resonance in forced vibrations of in-plane translating viscoelastic plates with 3:1 internal resonance. Nonlinear Dyn. 69(1–2), 159–172 (2012)

    Article  MathSciNet  Google Scholar 

  30. Emam, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J. Non-Linear Mech. 52, 12–25 (2013)

    Article  Google Scholar 

  31. Kumar, P., Pratiher, B.: Modal characterization with nonlinear behaviors of a two-link flexible manipulator. Arch. Appl. Mech. 89(7), 1201–1220 (2019)

    Article  Google Scholar 

  32. Bauomy, H.S., El-Sayed, A.T.: Vibration performance of a vertical conveyor system under two simultaneous resonances. Arch. Appl. Mech. 88(8), 1349–1368 (2018)

    Article  Google Scholar 

  33. Chen, J., Hu, W.-H., Li, Q.-S.: Nonlinear dynamics of a foldable multibeam structure with one to two internal resonances. Int. J. Mech. Sci. 150, 369–378 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12002298 and 11732005), the China Postdoctoral Science Foundation (Grant No. 2020M681578), and the Shandong Provincial Natural Science Foundation, China (Grant Nos. ZR2020QA038 and ZR2018MEE021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The relevant terms in Eq. (5) are given as

$$ \begin{aligned} M_{s} & = \int_{-L_{1}}^{{L_{1} }} {\rho_{1} A_{1} \left[ {\varphi_{1s} (x)} \right]}^{2} {\mathrm{d}} x + \int_{-L_{2}}^{{L_{2} }} {\rho_{2} A_{2} \left[ {\varphi_{2s} (x)} \right]}^{2} {\mathrm{d}} x,\quad c_{s} = \left( {aM_{s} + bK_{s} } \right), \\ K_{s} & = \int_{-L_{1}}^{{L_{1} }} {E_{1} I_{1} \left[ {\varphi^{\prime\prime}_{1s} (x)} \right]^{2} } {\mathrm{d}} x{ + }\int_{-L_{2}}^{{L_{2} }} {E_{2} I_{2} \left[ {\varphi^{\prime\prime}_{2s} (x)} \right]^{2} } {\mathrm{d}} x + k_{1}^{L} \Theta_{1s}^{{2}} + k_{2}^{L} \Theta_{2s}^{{2}} , \\ d_{s}^{jkr} & = k_{1}^{N} \Theta_{1j} \Theta_{1k} \Theta_{1r} \Theta_{1s} + k_{2}^{N} \Theta_{2j} \Theta_{2k} \Theta_{2r} \Theta_{2s} , \\ F_{s} (t) & = \int_{-L_{1}}^{{L_{1} }} {\rho_{1} A_{1} F\varphi_{is} (x) {\mathrm{d}}x + \int_{-L_{2}}^{{L_{2} }} {\rho_{2} A_{2} F\varphi_{2s} (x){\mathrm{d}}x} } . \\ \end{aligned} $$

Appendix 2

The coefficients listed in Eqs. (7) and (8) are

$$ \begin{aligned} \hat{\mu }_{s} & = \frac{1}{2}\left( {a + b\omega_{s}^{{2}} } \right),\quad \hat{\alpha }_{s1} = \frac{1}{{M_{s} }}d_{s}^{111} ,\quad \hat{\alpha }_{s2} = \frac{1}{{M_{s} }}\left( {d_{s}^{112} + d_{s}^{121} + d_{s}^{211} } \right), \\ \hat{\alpha }_{s3} & = \frac{1}{{M_{s} }}\left( {d_{s}^{122} + d_{s}^{212} + d_{s}^{221} } \right),\quad \hat{\alpha }_{s4} = \frac{1}{{M_{s} }}d_{s}^{222} ,\quad \hat{f}_{s} (t) = \frac{1}{{M_{s} }}F_{s} (t),\quad s = 1,2. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Yu, T., Jin, D. et al. Three-to-one internal resonance in a two-beam structure connected with nonlinear joints. Arch Appl Mech 91, 3835–3850 (2021). https://doi.org/10.1007/s00419-021-01980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01980-8

Keywords

Navigation