Skip to main content
Log in

Influence of the Morphology of Mesoporous Carbon on the Electrocatalytic Activity of Pt in Oxygen Reduction

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Mesostructured silicates MCM-48, SBA-15, and MCM-41 were synthesized, and the corresponding ordered mesoporous carbons CMK-1, CMK-3, and CS41 were prepared on their basis. Disordered mesoporous carbon WMC was prepared on the basis of amorphous SiO2. The carbon materials obtained were taken as supports for Pt electrocatalysts, which were tested in a model reaction of oxygen reduction. The supports and catalysts were examined by methods of low-temperature nitrogen adsorption, thermal gravimetric analysis, X-ray diffraction, and high-resolution transmission electron microscopy. The catalyst supported on CMK-1 ordered carbon material exhibits higher activity compared to the catalysts supported on CMK-3, CS41, and WMC. The results obtained show that the morphology of carbon support pores plays an important role in the electrocatalytic activity of Pt particles and that the correct choice of carbon supports can ensure considerable cost reduction due to decreased metal content of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Viva, F.A., Bruno, M.M., Franceschini, E.A., Thomas, Y.R.J., Sanchez, G.R., Solorza-Feria, O., and Corti, H.R., Int. J. Hydrogen Energy, 2014, vol. 39, pp. 8821–8826. https://doi.org/10.1016/j.ijhydene.2013.12.027

    Article  CAS  Google Scholar 

  2. Banham, D., Feng, F., Fürstenhaupt, T., Pei, K., Ye, S., and Birss, V., Catalysts, 2015, vol. 5, pp. 1046–1067. https://doi.org/10.3390/catal5031046

    Article  CAS  Google Scholar 

  3. Xu, W., Wu, Z., and Tao, S., J. Mater. Chem. A, 2016, vol. 4, pp. 16272–16287. https://doi.org/10.1039/C6TA05304A

    Article  CAS  Google Scholar 

  4. Eftekhari, A. and Fan, Z., Mater. Chem. Frontiers, 2017, vol. 1, pp. 1001–1027. https://doi.org/10.1039/C6QM00298F

    Article  CAS  Google Scholar 

  5. Song, S., Liang, Y., Li, Z., Wang, Y., Fu, R., Wu, D., and Tsiakaras, P., Appl. Catal. B, 2010, vol. 98, pp. 132–137. https://doi.org/10.1016/j.apcatb.2010.05.021

    Article  CAS  Google Scholar 

  6. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D., J. Am. Chem. Soc., 1998, vol. 120, pp. 6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  7. Schumacher, K., Ravikovitch, P.I., Du Chesne, A., Neimark, A.V., and Unger, K.K., Langmuir, 2000, vol. 16, pp. 4648–4654. https://doi.org/10.1021/la991595i

    Article  CAS  Google Scholar 

  8. Meynen, V., Cool, P., and Vansant, E.F., Micropor. Mesopor. Mater., 2009, vol. 125, pp. 170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

    Article  CAS  Google Scholar 

  9. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., and Schlenker, J.L., J. Am. Chem. Soc., 1992, vol. 114, pp. 10834–10843. https://doi.org/10.1007/0-306-47066-7_1

    Article  CAS  Google Scholar 

  10. Wang, H. and Liu, C.-J., Appl. Catal. B, 2011, vol. 106, nos. 3–4, pp. 672–680. https://doi.org/10.1016/j.apcatb.2011.06.034

    Article  CAS  Google Scholar 

  11. Kruk, M., Jaroniec, M., Ko, C., and Ryoo, R., Chem. Mater., 2000, vol. 12, pp. 1961–1968. https://doi.org/10.1021/cm000164e

    Article  CAS  Google Scholar 

  12. Wei, F.Y., Liu, Z.W., Lu, J., and Liu, Z.T., Micropor. Mesopor. Mater., 2010, vol. 131, nos. 1–3, pp. 224–229. https://doi.org/10.1016/j.micromeso.2009.12.027

    Article  CAS  Google Scholar 

  13. Taralkar, U.S., Kasture, M.W., and Joshi, P.N., J. Phys. Chem. Solids, 2008, vol. 69, pp. 2075–2081. https://doi.org/10.1016/j.jpcs.2008.03.004

    Article  CAS  Google Scholar 

  14. Liu, Y., Li, Z., and Yang, X., RSC Adv., 2016, vol. 6, pp. 21193–21203. https://doi.org/10.1039/C5RA27289K

    Article  CAS  Google Scholar 

  15. Calvillo, L., Gangeri, M., Perathoner, S., Centi, G., Moliner, R., and Lázaro, M.J., Int. J. Hydrogen Energy, 2011, vol. 36, pp. 9805–9814. https://doi.org/10.1016/j.ijhydene.2011.03.023

    Article  CAS  Google Scholar 

  16. Flodström, K. and Alfredsson, V., Micropor. Mesopor. Mater., 2003, vol. 59, pp. 167–176. https://doi.org/10.1016/S1387-1811(03)00308-1

    Article  CAS  Google Scholar 

  17. Huirache-Acuña, R., Nava, R., Peza-Ledesma, C., Lara-Romero, J., Alonso-Núñez, G., Pawelec, B., Rivera-Muñoz, E.M., Materials, 2013, vol. 6, pp. 4139–4167. https://doi.org/10.3390/ma6094139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aly Aboud, M.F., Alothman, Z.A., Habila, M.A., Zlotea, C., Latroche, M., and Cuevas, F., Energies, 2015, vol. 8, pp. 3578–3590. https://doi.org/10.3390/en8053578

    Article  CAS  Google Scholar 

  19. Kuppan, B. and Selvam, P., Prog. Nat. Sci., 2012, vol. 22, pp. 616–623. https://doi.org/10.1016/j.pnsc.2012.11.005

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research within the framework of BRICS project no. 19-53-80033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Martynenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 380–387, January, 2021 https://doi.org/10.31857/S0044461821030142

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko, E.A., Vostrikov, S.V., Bulanova, A.V. et al. Influence of the Morphology of Mesoporous Carbon on the Electrocatalytic Activity of Pt in Oxygen Reduction. Russ J Appl Chem 94, 362–369 (2021). https://doi.org/10.1134/S1070427221030137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221030137

Keywords:

Navigation