Skip to main content
Log in

Saliency Detection Inspired by Topological Perception Theory

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The topological perception theory claims that visual perception of a scene begins from topological properties and then exploits local details. Inspired by this theory, we defined the topological descriptor and topological complexity, and we observed, based on statistics, that the saliencies of the regions with higher topological complexities are generally higher than those of regions with lower topological complexities. We then introduced the topological complexity as a saliency prior and proposed a novel unsupervised topo-prior-guided saliency detection system (TOPS). This system is framed as a topological saliency prior (topo-prior)-guided two-level local cue processing (i.e., pixel- and regional-level cues) with a multi-scale strategy, which includes three main modules: (1) a basic computational model of the topological perception theory for extracting topological features from images, (2) a topo-prior calculation method based on the topological features, and (3) a global–local saliency combination framework guided by the topo-prior. Extensive experiments on widely used salient object detection (SOD) datasets demonstrate that our system outperforms the unsupervised state-of-the-art algorithms. In addition, the topo-prior proposed in this work can be used to boost supervised methods including the deep-learning-based ones for fixation prediction and SOD tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://www.neuro.uestc.edu.cn/vccl/

  2. http://www.cs.bu.edu/groups/ivc/software/BMS/

  3. https://saliency.tuebingen.ai/

References

  • Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1597–1604

  • Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.

    Article  Google Scholar 

  • Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., & Ogden, J. M. (1984). Pyramid methods in image processing. RCA engineer, 29(6), 33–41.

    Google Scholar 

  • Arbelaez P (2006) Boundary extraction in natural images using ultrametric contour maps. In: Conference on IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp 182–182

  • Borji A (2019) Saliency prediction in the deep learning era: Successes and limitations. IEEE Transactions on Pattern Analysis and Machine Intelligence

  • Borji A, Itti L (2011) Scene classification with a sparse set of salient regions. IEEE International Conference on Robotics and Automation pp 1902–1908

  • Borji, A., & Itti, L. (2012). State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 185–207.

    Article  Google Scholar 

  • Borji, A., Sihite, D. N., & Itti, L. (2012). Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. IEEE Transactions on Image Processing, 22(1), 55–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Borji A, Cheng MM, Hou Q, Jiang H, Li J (2014) Salient object detection: A survey. Computational Visual Media pp 1–34

  • Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention, and visual search: An information theoretic approach. Journal of vision, 9(3), 5.

    Article  Google Scholar 

  • Chen J, Li Q, Wu W, Ling H, Wu L, Zhang B, Li P (2019) Saliency detection via topological feature modulated deep learning. 2019 IEEE International Conference on Image Processing pp 1630–1634

  • Chen, L. (1982). Topological structure in visual perception. Science, 218(4573), 699–700.

    Article  Google Scholar 

  • Chen, L. (2005). The topological approach to perceptual organization. Visual Cognition, 12(4), 553–637.

    Article  Google Scholar 

  • Chen, L., Zhang, S., & Mandyam, V. S. (2003). Global perception in small brains: topological pattern recognition in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6884–6889.

    Article  Google Scholar 

  • Chen, S., Zheng, L., Hu, X., & Zhou, P. (2016). Discriminative saliency propagation with sink points. Pattern recognition, 60, 2–12.

    Article  Google Scholar 

  • Chen S, Tan X, Wang B, Hu X (2018) Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 234–250

  • Chen, S., Tan, X., Wang, B., Lu, H., Hu, X., & Fu, Y. (2020). Reverse attention-based residual network for salient object detection. IEEE Transactions on Image Processing, 29, 3763–3776.

    Article  Google Scholar 

  • Chen X, Zheng A, Li J, Lu F (2017) Look, perceive and segment: Finding the salient objects in images via two-stream fixation-semantic cnns. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1050–1058

  • Cheng MM, Zhang GX, Mitra NJ, Huang X, Hu SM (2011) Global contrast based salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 409–416

  • Cheng, M. M., Mitra, N. J., Huang, X., Torr, P. H., & Hu, S. M. (2014a). Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 569–582.

    Article  Google Scholar 

  • Cheng MM, Zhang Z, Lin WY, Torr P (2014b) Bing: Binarized normed gradients for objectness estimation at 300fps. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3286–3293

  • Cong, R., Lei, J., Fu, H., Cheng, M. M., Lin, W., & Huang, Q. (2019). Review of visual saliency detection with comprehensive information. IEEE Transactions on Circuits and Systems for Video Technology, 29(10), 2941–2959.

    Article  Google Scholar 

  • Cornia M, Baraldi L, Serra G, Cucchiara R (2016) A deep multi-level network for saliency prediction. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp 3488–3493

  • DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in neurosciences, 11(5), 219–226.

    Article  Google Scholar 

  • Fan DP, Cheng MM, Liu Y, Li T, Borji A (2017) Structure-measure: A new way to evaluate foreground maps. In: IEEE International Conference on Computer Vision, pp 4548–4557

  • Fang, Y., Wang, J., Narwaria, M., Le Callet, P., & Lin, W. (2014). Saliency detection for stereoscopic images. IEEE Transactions on Image Processing, 23(6), 2625–2636.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, Y., Shi, M., Tao, D., & Xu, C. (2015). Database saliency for fast image retrieval. IEEE Transactions on Multimedia, 17(3), 359–369.

    Article  Google Scholar 

  • Garcia-Diaz, A., Fdez-Vidal, X. R., Pardo, X. M., & Dosil, R. (2012). Saliency from hierarchical adaptation through decorrelation and variance normalization. Image and Vision Computing, 30(1), 51–64.

    Article  Google Scholar 

  • Gong C, Tao D, Liu W, Maybank SJ, Fang M, Fu K, Yang J (2015) Saliency propagation from simple to difficult. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2531–2539

  • Gu, X., Fang, Y., & Wang, Y. (2013). Attention selection using global topological properties based on pulse coupled neural network. Computer Vision Image Understanding, 117(10), 1400–1411.

    Article  Google Scholar 

  • Harel J, Koch C, Perona P (2007) Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp 545–552

  • He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences, 112(41), E5647–E5655.

    Article  Google Scholar 

  • He S, Tavakoli HR, Borji A, Mi Y, Pugeault N (2019) Understanding and visualizing deep visual saliency models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 10206–10215

  • Heeger DJ, Bergen JR (1995) Pyramid-based texture analysis/synthesis. In: the 22nd annual conference on Computer Graphics and Interactive Techniques, Citeseer, pp 229–238

  • Hornung A, Pritch Y, Krahenbuhl P, Perazzi F (2012) Saliency filters: Contrast based filtering for salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 733–740

  • Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8

  • Hou, X., Harel, J., & Koch, C. (2011). Image signature: Highlighting sparse salient regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 194–201.

    Google Scholar 

  • Huang, X., & Zhang, Y. (2018). Water flow driven salient object detection at 180 fps. Pattern Recognition, 76, 95–107.

    Article  Google Scholar 

  • Huang, X., & Zhang, Y. J. (2017). 300-fps salient object detection via minimum directional contrast. IEEE Transactions on Image Processing, 26(9), 4243–4254.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Y, Huang K, Tan T, Tao D (2009) A novel visual organization based on topological perception. In: Asian Conference on Computer Vision, Springer, pp 180–189

  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.

    Article  Google Scholar 

  • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1254–1259.

    Article  Google Scholar 

  • Ji, Q., Fang, Z., Xie, Z., & Lu, Z. (2013). Video abstraction based on the visual attention model and online clustering. Signal Processing-image Communication, 28(3), 241–253.

    Article  Google Scholar 

  • Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013a) Salient object detection: A discriminative regional feature integration approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2083–2090

  • Jiang P, Ling H, Yu J, Peng J (2013b) Salient region detection by ufo: Uniqueness, focusness and objectness. In: IEEE International Conference on Computer Vision, pp 1976–1983

  • Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. In: IEEE International Conference on Computer Vision, IEEE, pp 2106–2113

  • Kim, J., Han, D., Tai, Y. W., & Kim, J. (2015). Salient region detection via high-dimensional color transform and local spatial support. IEEE transactions on image processing, 25(1), 9–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Klingner M, Termöhlen JA, Mikolajczyk J, Fingscheidt T (2020) Self-supervised monocular depth estimation: Solving the dynamic object problem by semantic guidance. In: European Conference on Computer Vision, Springer, pp 582–600

  • Koch C, Ullman S (1987) Shifts in selective visual attention: towards the underlying neural circuitry. In: Matters of intelligence, Springer, pp 115–141

  • Koffka KPrinciples of Gestalt psychologyPrinciples of Gestalt psychology. Routledge

  • Kruthiventi, S. S., Ayush, K., & Babu, R. V. (2017). Deepfix: A fully convolutional neural network for predicting human eye fixations. IEEE Transactions on Image Processing, 26(9), 4446–4456.

    Article  MathSciNet  MATH  Google Scholar 

  • Kummerer M, Wallis TSA, Gatys LA, Bethge M (2017) Understanding low- and high-level contributions to fixation prediction. In: The IEEE International Conference on Computer Vision (ICCV)

  • Li C, Yuan Y, Cai W, Xia Y, Dagan Feng D (2015a) Robust saliency detection via regularized random walks ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2710–2717

  • Li G, Yu Y (2015) Visual saliency based on multiscale deep features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 5455–5463

  • Li G, Xie Y, Wei T, Wang K, Lin L (2018) Flow guided recurrent neural encoder for video salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3243–3252

  • Li, J., Levine, M. D., An, X., Xu, X., & He, H. (2013). Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4), 996–1010.

    Article  Google Scholar 

  • Li N, Sun B, Yu J (2015b) A weighted sparse coding framework for saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 5216–5223

  • Lin, X., Wang, Z. J., Ma, L., & Wu, X. (2019). Saliency detection via multi-scale global cues. IEEE Transactions on Multimedia, 21(7), 1646–1659.

    Article  Google Scholar 

  • Liu N, Han J, Zhang D, Wen S, Liu T (2015) Predicting eye fixations using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 362–370

  • Liu N, Han J, Yang MH (2018) Picanet: Learning pixel-wise contextual attention for saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3089–3098

  • Liu, Q., Hong, X., Zou, B., Chen, J., Chen, Z., & Zhao, G. (2017). Hierarchical contour closure-based holistic salient object detection. IEEE Transactions on Image Processing, 26(9), 4537–4552.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., et al. (2010). Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 353–367.

    Google Scholar 

  • Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7(11), 3416–3468.

    Article  Google Scholar 

  • Ma, C., Miao, Z., Zhang, X. P., & Li, M. (2017). A saliency prior context model for real-time object tracking. IEEE Transactions on Multimedia, 19(11), 2415–2424.

    Article  Google Scholar 

  • Marr, David (1982) Vision: A computational investigation into the human representation and processing of visual information. Quarterly Review of Biology 8

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  MathSciNet  Google Scholar 

  • Peng H, Li B, Xiong W, Hu W, Ji R (2014) Rgbd salient object detection: A benchmark and algorithms. In: European Conference on Computer Vision, Springer, pp 92–109

  • Peng, H., Li, B., Ling, H., Hu, W., Xiong, W., & Maybank, S. J. (2016). Salient object detection via structured matrix decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 818–832.

    Article  Google Scholar 

  • Perazzi F, Krähenbühl P, Pritch Y, Hornung A (2012) Saliency filters: Contrast based filtering for salient region detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 733–740

  • Peters, R. J., Iyer, A., Itti, L., & Koch, C. (2005). Components of bottom-up gaze allocation in natural images. Vision research, 45(18), 2397–2416.

    Article  Google Scholar 

  • Qin Y, Lu H, Xu Y, Wang H (2015) Saliency detection via cellular automata. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 110–119

  • Qin, Y., Feng, M., Lu, H., & Cottrell, G. W. (2018). Hierarchical cellular automata for visual saliency. International Journal of Computer Vision, 126(7), 751–770.

    Article  MathSciNet  MATH  Google Scholar 

  • Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., & Yang, Q. (2017). Rgbd salient object detection via deep fusion. IEEE Transactions on Image Processing, 26(5), 2274–2285.

    Article  MathSciNet  MATH  Google Scholar 

  • Rahtu E, Kannala J, Salo M, Heikkilä J (2010) Segmenting salient objects from images and videos. European Conference on Computer Vision pp 366–379

  • Scharfenberger C, Wong A, Fergani K, Zelek JS, Clausi DA (2013) Statistical textural distinctiveness for salient region detection in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition

  • Seki A, Pollefeys M (2017) Sgm-nets: Semi-global matching with neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 231–240

  • Shi, J., Yan, Q., Xu, L., & Jia, J. (2016). Hierarchical image saliency detection on extended cssd. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4), 717–729.

    Article  Google Scholar 

  • Siva P, Russell C, Xiang T, Agapito L (2013) Looking beyond the image: Unsupervised learning for object saliency and detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3238–3245

  • Song, H., Liu, Z., Du, H., Sun, G., Le Meur, O., & Ren, T. (2017). Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Transactions on Image Processing, 26(9), 4204–4216.

    Article  MathSciNet  MATH  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    Article  Google Scholar 

  • Tu WC, He S, Yang Q, Chien SY (2016) Real-time salient object detection with a minimum spanning tree. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2334–2342

  • Vig E, Dorr M, Cox D (2014) Large-scale optimization of hierarchical features for saliency prediction in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2798–2805

  • Wang, B., Zhou, T. G., Zhuo, Y., & Chen, L. (2007). Global topological dominance in the left hemisphere. Proceedings of the National Academy of Sciences, 104(52), 21014–21019.

    Article  Google Scholar 

  • Wang, J., Jiang, H., Yuan, Z., Cheng, M. M., Hu, X., & Zheng, N. (2017a). Salient object detection: A discriminative regional feature integration approach. International Journal of Computer Vision, 123(2), 251–268.

    Article  Google Scholar 

  • Wang L, Wang L, Lu H, Zhang P, Ruan X (2016) Saliency detection with recurrent fully convolutional networks. In: European Conference on Computer Vision, Springer, pp 825–841

  • Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X (2017b) Learning to detect salient objects with image-level supervision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 136–145

  • Wang T, Zhang L, Wang S, Lu H, Yang G, Ruan X, Borji A (2018) Detect globally, refine locally: A novel approach to saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3127–3135

  • Wang, W., & Shen, J. (2018). Deep visual attention prediction. IEEE Transactions on Image Processing, 27(5), 2368–2378.

    Article  MathSciNet  Google Scholar 

  • Wang W, Lai Q, Fu H, Shen J, Ling H (2019a) Salient object detection in the deep learning era: An in-depth survey. arXiv preprint arXiv:1904.09146

  • Wang W, Shen J, Cheng MM, Shao L (2019b) An iterative and cooperative top-down and bottom-up inference network for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 5968–5977

  • Wang W, Shen J, Dong X, Borji A, Yang R (2019c) Inferring salient objects from human fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence pp 1

  • Wang W, Shen J, Xie J, Cheng MM, Ling H, Borji A (2019d) Revisiting video saliency prediction in the deep learning era. IEEE Transactions on Pattern Analysis and Machine Intelligence pp 1

  • Wang W, Zhao S, Shen J, Hoi SC, Borji A (2019e) Salient object detection with pyramid attention and salient edges. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1448–1457

  • Wei Y, Wen F, Zhu W, Sun J (2012) Geodesic saliency using background priors. In: European Conference on Computer Vision, Springer, pp 29–42

  • Wolfe JM (1994) Guided search 2.0 a revised model of visual search. Psychon Bull Rev 1(2):202–238

  • Wolfe, J. M., Melissa, L.-H. V., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 15(2), 77–84.

    Article  Google Scholar 

  • Wu Z, Su L, Huang Q (2019) Cascaded partial decoder for fast and accurate salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3907–3916

  • Xiao, X., Zhou, Y., & Gong, Y. J. (2018). RGB-D saliency detection with pseudo depth. IEEE Transactions on Image Processing, 28(5), 2126–2139.

    Article  MathSciNet  Google Scholar 

  • Xie, Y., Lu, H., & Yang, M. H. (2012). Bayesian saliency via low and mid level cues. IEEE Transactions on Image Processing, 22(5), 1689–1698.

    MathSciNet  MATH  Google Scholar 

  • Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1155–1162

  • Yang C, Zhang L, Lu H, Ruan X, Yang MH (2013) Saliency detection via graph-based manifold ranking. IEEE Conference on Computer Vision and Pattern Recognition pp 3166–3173

  • Yang KF, Gao X, Zhao JR, Li YJ (2015) Segmentation-based salient object detection. In: CCF Chinese Conference on Computer Vision, pp 94–102

  • Yang, K. F., Li, H., Li, C. Y., & Li, Y. J. (2016). A unified framework for salient structure detection by contour-guided visual search. IEEE Transactions on Image Processing, 25(8), 3475–3488.

    Article  MathSciNet  MATH  Google Scholar 

  • Yin L, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 280–287

  • Yuan, Y., Li, C., Kim, J., Cai, W., & DD F. (2017). Reversion correction and regularized random walk ranking for saliency detection. IEEE Transaction Image Process, 27(3), 1–1.

  • Zeng Y, Zhuge Y, Lu H, Zhang L, Qian M, Yu Y (2019) Multi-source weak supervision for saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 6074–6083

  • Zhang J, Sclaroff S (2013) Saliency detection: A boolean map approach. In: Proceedings of the IEEE international conference on computer vision, pp 153–160

  • Zhang, J., & Sclaroff, S. (2015). Exploiting surroundedness for saliency detection: a boolean map approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(5), 889–902.

    Article  Google Scholar 

  • Zhang, L., Tong, M. H., Marks, T. K., Shan, H., & Cottrell, G. W. (2008). Sun: A bayesian framework for saliency using natural statistics. Journal of vision, 8(7), 32–32.

    Article  Google Scholar 

  • Zhang L, Zhang J, Lin Z, Lu H, He Y (2019) Capsal: Leveraging captioning to boost semantics for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 6024–6033

  • Zhang X, Wang T, Qi J, Lu H, Wang G (2018) Progressive attention guided recurrent network for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 714–722

  • Zhao, Q., & Koch, C. (2013). Learning saliency-based visual attention : A review. Signal Processing, 93(6), 1401–1407.

    Article  Google Scholar 

  • Zhao R, Ouyang W, Li H, Wang X (2015) Saliency detection by multi-context deep learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1265–1274

  • Zhao T, Wu X (2019) Pyramid feature attention network for saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3085–3094

  • Zhou, L., & Gu, X. (2020). Embedding topological features into convolutional neural network salient object detection. Neural Networks, 121, 308–318.

    Article  Google Scholar 

  • Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2814–2821

  • Zhuo, Y., Zhou, T. G., Rao, H. Y., Wang, J. J., Meng, M., Chen, M., et al. (2003). Contributions of the visual ventral pathway to long-range apparent motion. Science, 299(5605), 417–420.

    Article  Google Scholar 

  • Zitnick CL, Dollár P (2014) Edge boxes: Locating object proposals from edges. In: European conference on computer vision, Springer, pp 391–405

Download references

Acknowledgements

The authors would like to thank Professor Lin Chen for his helpful discussions and suggestions on the modeling of his topological perception theory. This work was supported by the Key Area R&D Program of Guangdong Province (#2018B030338001), the Natural Science Foundations of China (#62076055, #61806041). This work was also supported by the 111 Project (B12027) of China. We also thank LetPub for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jie Li.

Additional information

Communicated by Jiaya Jia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Yang, KF., Luo, FY. et al. Saliency Detection Inspired by Topological Perception Theory. Int J Comput Vis 129, 2352–2374 (2021). https://doi.org/10.1007/s11263-021-01478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-021-01478-4

Keywords

Navigation